

DEPARTMENT OF COMPUTER APPLICATIONS

TRICHY-20

PYTHON PROGRAMMING – 20UCA5CC11

PREPARED BY

Dr. S. PEERBASHA & Mr. Y. MOHAMMED IQBAL

Mr. P.U. MANIMARAN III BCA-B

Department of Computer Applications

UNIT-1

TOPIC-1 INTRODUCTION

What is Python?

Python is a popular programming language. It was created by Guido van Rossum, and

released in 1991.

It is used for:

 Web Development (Server-Side),

 Software Development,

 Mathematics,

 System Scripting.

What can Python do?

 Python can be used on a server to create web applications.

 Python can be used alongside software to create workflows.

 Python can connect to database systems. It can also read and modify files.

 Python can be used to handle big data and perform complex mathematics.

 Python can be used for rapid prototyping, or for production-ready software

development.

Why Python?

 Python works on different platforms (Windows, Mac, Linux, Raspberry Pi, etc).

 Python has a simple syntax similar to the English language.

 Python has syntax that allows developers to write programs with fewer lines than

some other programming languages.

 Python runs on an interpreter system, meaning that code can be executed as soon as it

is written. This means that prototyping can be very quick.

 Python can be treated in a procedural way, an object-oriented way or a functional

way.

Good to know

 The most recent major version of Python is Python 3, which we shall be using in this

tutorial. However, Python 2, although not being updated with anything other than

security updates, is still quite popular.

 In this tutorial Python will be written in a text editor. It is possible to write Python in

an Integrated Development Environment, such as Thonny, Pycharm, Netbeans or

Eclipse which are particularly useful when managing larger collections of Python

files.

Python Syntax Compared To Other Programming Languages

 Python was designed for readability, and has some similarities to the English language

with influence from mathematics.

 Python uses new lines to complete a command, as opposed to other programming

languages which often use semicolons or parentheses.

 Python relies on indentation, using whitespace, to define scope; such as the scope of

loops, functions and classes. Other programming languages often use curly-brackets

for this purpose.

Using Python:

 The Python interpreter can run Python programs that are saved in files or

interactively execute Python statements that are typed at the keyboard.

 Python comes with a program named IDLE that simplifies the process of

writing, executing, and testing programs.

Interpreted Mode:

 When we install the Python language on your computer, one of the items that

is installed is the Python interpreter.

 The Python interpreter is a program that can read Python programming

statements and execute them.

We can use the interpreter in two modes: interactive mode and script mode.

1. In interactive mode, the interpreter waits for you to type Python statements on

the keyboard. Once you type a statement, the interpreter executes it and then

waits for you to type another statement.

2. In script mode, the interpreter reads the contents of a file that contains Python

statements. Such a file is known as a Python program or a Python script. The

interpreter executes each statement in the Python program as it reads it.

Interactive Mode:

Once we install python in our system you start the interpreter in interactive mode by going to

the operating system’s command line and typing the following command “python”.

There we can type our program like

print('Welcome to our department')

TOPIC-2 INPUT, PROCESSING AND OUTPUT:

Computer programs typically perform the following three-step process:

1. Input is received.

2. Some process is performed on the input.

3. Output is produced.

hoursWorker = 4

hourlyPayRate = 250

grossPay = hoursWorked*hourlyPayRate

print(grossPay)

TOPIC-2 Displaying Output with the print Function

 A Function is a piece of prewritten code that performs an operation.

 And print is the fundamental built-in function this statement is used to display the

output.

Example of print function:-

>>>print(“Hello Students”)

Output:-

Hello Students

1. Apostrophe

 To add Apostrophe in our print statement we have enclose the

statement in double quotes. For Example

>>>print(“I’m Dr. S. Peerbasha”)

Output:-

I’m Dr. S. Peerbasha

2. Double Quotes

 To add double quotes in our print statement we have enclose the

statement in Apostrophe.

 For Example

>>>print(‘I love “Cars” so much’)

Output:-

I love “Cars” so much

3. Both Apostrophe and Double Quotes

 If you want to add both the Apostrophe and the double quotes in the print statement

we have to enclose the statement in triple quotes either “ “ “ or ‘ ‘ ‘ . For example

>>>print(“”” I’m a “Web Developer” “””)

Output:-

I’m a “Web Developer”

Or

>>>print(‘’’ I’m a “Game Developer” ‘’’)

Output:-

I’m a “Game Developer”

TOPIC-3 Comments

 Comments are short notes placed in different parts of a program, explaininghow those

parts of the program work.

 In python a comment statement begins with # symbol.

 When python interpreter sees the # symbol the complete line will be ignored.

For Example, in the below program comment in the first and the last line of the program

Comment1.py

#We can add comments anywhere in the program

print(“Cat”)

print(“Dog”)

#These comment lines will be ignored

Output

Cat

Dog

We can add comment line anywhere in the program

Comment2.py

Print(“Continental Gt 650”)

#Comment line in the middle of the program

print(“Interceptor 650”) #Comment line in the same line of the program code

Output

Continental Gt 650

Interceptor 650

TOPIC-4 Variables

 Programs use variables to store data in memory.

 A variable is a name that represents a value in the computer’s memory.

 For example, a program that calculates the sum of two numbers

a = 10

b = 20

c = a + b

print(“Sum of a and b is ”, c)

Output

Sum of a and b is 30

 In the above example we are storing a value to both a and b.

 When a variable represents a value in the computer’s memory, we say that the

variable references the value.

 And in the above example we are assigning a value to a variable with the help of

assignment operator.

 An assignment statement is written in the following general format:

variable = expression

 In an assignment statement, the variable that is receiving the assignment must appear

on the left side of the = operator.

 As shown in the above example, an error occurs if the item on the left side of the =

operator is not a variable:

>>>30 = value

SyntaxError: can't assign to literal

Variable Reassignment

Value of a variable can be reassigned for Example:

a = 10

print(“Now value of a is ”, a)

a = 20

print(“Now value of a is “, a)

Output:

Now value of a is 10

Now value of a is 20

Variable Naming Rule

Although you are allowed to make up your own names for variables, you must follow these

rules:

 You cannot use one of Python’s keywords as a variable name.

 A variable name cannot contain spaces

 The first character must be one of the letters a-z, A-Z, or an underscore character (_).

 After the first character you may use the letters a-z or A-Z, the digits 0 through 9, or

underscores.

 Uppercase and lowercase characters are distinct. This means the variable name

BcaDept is not the same as Bcadept.

In addition to following these rules, we should always choose names for our variables that

give an indication of what they are used for. For example, if we want to student age

means we can declare the variable as:

studentAge (or) student_age

Variable Name Legal or Illegal?

 units_per_day Legal

 dayOfWeek Legal

 3dGraph Illegal. Variable names cannot begin with a digit.

 June1997 Legal

 Mixture#3 Illegal. Variable names may only use letters, digits, or

underscores

TOPIC-5 Reading Input from the Keyboard

 Most of the programs will need to read input from the user and then perform an

operation on that input.

 The input function reads a piece of data that has been entered at the keyboard and

returns that piece of data, as a string, back to the program.

 When a program reads data from the keyboard, usually it stores that data in a variable

so it can be used later by the program.

Syntax:-

variable = input(prompt)

Variable is used to store data.

Input is used to get data from the user through keyboard.

prompt is a string that is displayed on the screen. The string’s purpose is to instruct the user

to enter a value.

Example

>>>Name = input(“Enter your name: “)

Enter your name: Maran

If we give a value and enter the value will be stored in the variable. Here name Maran will be

stored in the variable called Name.

Or if we want to get a specify datatype value from user we can get it like giving

>>>age = int(input(“Enter your age: “))

Enter your age: 20

value = float(input(“Enter a float value: “))

Print(“Float value is : ”value)

Output:

Enter a float value: 21.1

Float value is : 21.1

If we give a character or a string it will throw an error

TOPIC-6 Functions

 A function is a group of statements that exist within a program for the purpose of

performing a specific task.

 Instead of writing a large program as one long sequence of statements, it can be

written as several small functions, each one performing a specific part of the task.

 These small functions can then be executed in the desired order to perform the overall

task.

 This approach is sometimes called divide and conquer because a large task is divided

into several smaller tasks that are easily performed.

Benefits of Modularizing a Program with Functions

A program benefits in the following ways when it is broken down into functions:

1. Simpler Code

A program’s code tends to be simpler and easier to understand when it is broken down into

functions.

Several small functions are much easier to read than one long sequence of statements.

2. Code Reuse

Functions also reduce the duplication of code within a program.

If a specific operation is performed in several places in a program, a function can be written

once to perform that operation, then be executed any time it is needed.

3. Better Testing

When each task within a program is contained in its own function, testing and debugging

becomes simpler. Programmers can test each function in a program individually, to determine

whether it correctly performs its operation. This makes it easier to isolate and fix errors.

TOPIC-7 Defining and Calling a Void Function

Python requires that you follow the same rules that you follow when naming variables which

was on the page 4.

Defining a Function

To create a function, you write its definition. Here is the general format of a function

definition in Python:

def functionName():

Statement

Statement

Statements…

 The header of the function should start with the def keyword, followed by the name of

the function, followed by a set of parentheses, followed by a colon.

 Beginning at the next line is a set of statements known as a block. A block is simply a

set of statements that belong together as a group.

 These statements are performed any time the function is executed.

 Notice in the general format that all of the statements in the block are indented.

 This indentation is required, because the Python interpreter uses it to tell where the

block begins and ends.

For example

def studentDetails():

print(“Name: Dr. S. Peerbasha”)

print(“Age: 32”)

print(“Department: Computer Applications”)

This code defines a function named studentDetails.

The message function contains a block with three statements. Executing the function will

cause these statements to execute.

Calling a Function

A function definition specifies what a function does, but it does not cause the function to

execute. To execute a function, you must call it. This is how we would call the studentDetails

function:

studentDetails()

When a function is called, the interpreter jumps to that function and executes the statements

in its block.

Example

Function1.py

#defining a function

def studentDetails():

print(“Name: Zenitsu”)

print(“Age: 18”)

print(“Department: BCA”)

#calling a function

studentDetails()

Output:

Name: Zenitsu

Age: 18

Department: BCA

TOPIC-8 Local Variables

 A local variable is created inside a function and cannot be accessed by statements that

are outside the function.

 Different functions can have local variables with the same names because the

functions cannot see each other's local variables.

 Anytime you assign a value to a variable inside a function, you create a local variable.

 A local variable belongs to the function in which it is created, and only statements

inside that function can access the variable.

 In the above program we have declared a function called details in that function.

 We have declared two local variable called name & age and printing them in a print

statement.

 After that we are calling the function which will print the statements inside the

function.

 Then we are calling the local variable outside the function which will raise an

NameError that name is not defined.

TOPIC-9: Passing Arguments to Functions

 Sometimes it is useful not only to call a function, but also to send one or more pieces

of data into the function.

 Pieces of data that are sent into a function are known as arguments.

 The function can use its arguments in calculations or other operations.

 If you want a function to receive arguments when it is called, you must equip the

function with one or more parameter variables.

 A parameter variable, often simply called a parameter, is a special variable that is

assigned the value of an argument when a function is called.

 Here is an example of a function that has a parameter variable:

Example

def add(a, b):

c = a + b

print(“Sum of given number is: “, c)

add(10, 20)

Output:

Sum of given number is: 30

In the above program we declared a function called adds and passed two arguments and

performed some addition operation and displayed the output.

While calling the function we have passed two values as parameter to the function.

Like this we can pass any type of value to the function.

Example 2

def studentDetails(firstName, lastName):

print(“Student First name is: “, firstName)

print(“Student Last name is: “, lastName)

studentDetails(“Micheal”, “Rayappan”) #calling function with string values

Output

Student First name is: Micheal

Student Last name is: Rayappan

TOPIC-10 Global Variables and Global Constants

 Local variable can be accessed only inside the function that created it.

 When a variable is declared outside the function it can accessed anywhere in the

program this is called global variable.

Output

Printing name Inside of function Rolex

Printing name Outside of function Rolex

Most programmers agree that you should restrict the use of global variables, or not use them

at all. The reasons are as follows:

 Global variables make debugging difficult. Any statement in a program file can

change the value of a global variable.

 If you find that the wrong value is being stored in a global variable, you have to

track down every statement that accesses it to determine where the bad value is

coming from.

 In a program with thousands of lines of code, this can be difficult.

 Global variables make a program hard to understand. A global variable can be

modified by any statement in the program. If you are to understand any part of the

program that uses a global variable, you have to be aware of all the other parts of

the program that access the global variable.

In most cases, you should create variables locally and pass them as arguments to the

functions that need to access them.

Global Constant

Although you should try to avoid the use of global variables, it is permissible to use global

constants in a program. A global constant is a global name that references a value that cannot

be changed. Because a global constant’s value cannot be change execution, you do not have

to worry about many of the potential hazards that are associated with the use of global

variables.

Although the Python language does not allow you to create true global constants, you can

simulate them with global variables. If you do not declare a global variable with the global

keyword inside a function, then you cannot change the variable’s assignment inside that

function. The following In the Spotlight section demonstrates how global variables can be

used in Python to simulate global constants.

UNIT-II

Decision Structures and Boolean Logic

TOPIC-1 The if Statement

 The if statement is used to create a decision structure, which allows a program to have

more than one path of execution.

 The if statement causes one or more statements to execute only when a Boolean

expression is true.

 A control structure is a logical design that controls the order in which a set of

statements execute.

 A sequence structure is a set of statements that execute in the order in which they

appear.

 For example, the following code is a sequence structure because the statements

execute from top to bottom

 In a decision structure’s simplest form, a specific action is performed only if a certain

condition exists.

 If the condition does not exist, the action is not performed.

 The below flowchart shows how the logic of an everyday decision can be

diagrammed as a decision structure.

 The diamond symbol represents a true/false condition.

 If the condition is true, we follow one path, which leads to an action being performed.

If the condition is false, we follow another path, which skips the action.

 In the flowchart, the diamond symbol indicates some condition that must be tested.

 In this case, we are determining whether the condition Cold outside is true or false.

 If this condition is true, the action Wear a coat is performed.

 If the condition is false, the action is skipped.

 The action is conditionally executed because it is performed only when a certain

condition is true.

 In Python, we use the if statement to write a single alternative decision structure.

Syntax:-

Boolean Expressions and Relational Operators

 The if statement tests an expression to determine whether it is true or false.

 The expressions that are tested by the if statements are called Boolean expressions.

 Typically, the Boolean expression that is tested by an if statement is formed with a

relational operator.

if condition:

statement-1

.........

statement-n

 A relational operator determines whether a specific relationship exists between two

values.

 For example, the greater than operator (>) determines whether one value is greater

than another.

 The equal to operator (==) determines whether two values are equal.

>Greater than

<Lesser than

>= Greater than or equal to

<= Lesser than or equal to

!=Not equal to

Example:

Age = 18

If Age >= 18: #condition will become true and the statements inside if block execute

print(“The example that almost used million time”)

print(“You are eligible to vote”)

Output:

The example that almost used million time

You are eligible to vote

TOPIC-2 The if-else Statement

 An if-else statement will execute one block of statements if its condition is true, or

another block if its condition is false.

 The decision structure in the flowchart tests the condition temperature < 40.

 If this condition is true, the message "A little cold, isn't it?" is displayed.

 If the condition is false, the statement message "Nice weather we're having." is

displayed.

Syntax

Example1

if temperature < 40:

If condition:

Statement

Statement

etc

else:

statement

statements

etc

print("A little cold, isn't it?")

else:

print("Nice weather we're having.")

Example2

time = 8.50

if time <= 8.40:

print(“You are allowed”)

else:

print(“What time is it?”)

print(“Attendance will not be given”)

Output:

What time is it?

Attendance will not be given

In the above program the time we have declared is 8.50 but the condition will be true only if

the time is lesser than or equal to 8.40. So, the output will be else block.

TOPI-3 Comparing String

 Python allows you to compare strings.

 This allows you to create decision structures that test the value of a string.

 We saw in the preceding examples how numbers can be compared in a decision

structure.

 You can also compare strings.

For example, look at the following code.

Example 1

Name1 = “Jones”

Name2 = “Sones”

If Name1 == Name2:

print(“The names are same.”)

else:

print(“The names are Not same.”)

Output:

The names are Not same.

The == operator compares Name1 and Name2 to determine whether they are equal. Because

the strings 'Jones' and 'Sones' are not equal, the else clause will display the message 'The

names are NOT the same.'

Example 2

password = input("Enter your password: ")

if password == "Shivaji Cool":

print("Hello Sir Welcome")

else:

print("You got few more chance")

Output:

Enter your password: I am Salman #1st try

You got few more chance

Enter your password: Shivaji Cool #2nd try

Hello Sir Welcome

We can also determine whether one string is greater than or less than another string. This is a

useful capability because programmers commonly need to design programs that sort strings

in some order.

It will perform the operation with the ASCII value of the character. For Example

If ‘a’ < ‘b’:

print(“a is less than b”)

Output:

a is less than b

Because the ASCII value of a is 97 and b is 98. 97 is less than 98 so the condition is true.

TOPIC-4 Nested Decision Structures and the if-elif-else Statement

 To test more than one condition, a decision structure can be nested inside another

decision structure.

Nested If else:

 If you create if-else statements inside other if-else statements, we will call them

nested if-else statements in python.

 The nested if-else statements are useful when you want to execute the block of

code/statements inside other if-else statements.

Syntax:-

if condition:

 if condition:

 statement(s)

 else:

 statement(s)

else:

 statement(s)

Example

x = 30

y = 10

if x >= y:

print("x is greater than or equals to y")

 if x == y:

print("x is equals to y")

 else:

print("x is greater than y")

else:

print("x is less than y")

Output

x is greater than or equals to y

x is greater than y

TOPIC-5 The if-elif-else Statement

 The elif statement allows you to check multiple expressions for TRUE and execute a

block of code as soon as one of the conditions evaluates to TRUE.

 Similar to the else, the elif statement is optional.

 However, unlike else, for which there can be at most one statement, there can be an

arbitrary number of elif statements following an if.

Syntax:

Example

var = 100

if var == 200:

print("1 - Got a true expression value”)

elif var == 150:

print("2 - Got a true expression value")

elif var == 100:

print("3 - Got a true expression value")

else:

print("4 - Got a false expression value")

Output

3 – Got a true expression value

TOPIC-6 Logical Operators

 The logical and operator and the logical or operator allow you to connect multiple

Boolean expressions to create a compound expression.

 The logical not operator reverses the truth of a Boolean expression.

if expression1:

statement

elif expression2:

statement

block

#we can add n number of elif

elif expression3:

statement

else:

statement

and:-

 The and operator connects two Boolean expressions into one compound expression.

Both subexpressions must be true for the compound expression to be true.

Example

Age = 20

If Age >= 18 and Age <=60: #Age is greater than 18 = true

print(“Age is valid”) #Age is less than 60 = true

else: #true and true is true

print(“Age is not valid”)

Output

Age is valid

In the above program we have checked whether the Age is greater than or equal to 18 and

less than or equal to 60. It satisfies both the condition so the condition will become true.

or:-

 The or operator takes two Boolean expressions as operands and creates a compound

Boolean expression that is true when either of the subexpressions is true.

 The following is an example of an if statement that uses the or operator

Example

Mark = 105

If Mark<1 or Mark>100:

print(“Mark is not valid”)

else:

print(“Mark is valid”)

Output

Mark is not valid

not:-

 The not operator is a unary operator that takes a Boolean expression as its operand

and reverses its logical value.

 In other words, if the expression is true, the not operator returns false, and if the

expression is false, the not operator returns true.

 The following is an if statement using the not operator

Example

if not(temperature > 100):

print('This is below the maximum temperature.')

First, the expression (temperature > 100) is tested and a value of either true or false is the

result. Then the not operator is applied to that value. If the expression (temperature > 100) is

true, the not operator returns false. If the expression (temperature > 100) is false, the not

operator returns true.

True -> False

False -> True

TOPIC-7 Boolean Variables

 A Boolean variable can reference one of two values: True or False.

 Boolean variables are commonly used as flags, which indicate whether specific

conditions exist.

 We have worked with int, float, and str (string) variables.

 In addition to these data types, Python also provides a bool data type.

 The bool data type allows you to create variables that may reference one of two

possible values: True or False.

 Here are examples of how we assign values to a bool variable

isHungry = false

isSleepy = true

 Boolean variables are most commonly used as flags.

 A flag is a variable that signals when some condition exists in the program.

 When the flag variable is set to False, it indicates the condition does not exist.

 When the flag variable is set to True, it means the condition does exist.

TOPIC-8 Introduction to Repetition Structures

 A repetition structure causes a statement or set of statements to execute repeatedly.

 Programmers commonly have to write code that performs the same task over and over

so we have to write the code again and again this will make our program a long

sequence of statement.

 In this approach there are several disadvantages, including the following:

 The duplicated code makes the program large.

 Writing a long sequence of statements can be time consuming.

 If part of the duplicated code has to be corrected or changed, then the correction or

change has to be done many times.

 Instead of writing the same sequence of statements over and over, a better way to

repeatedly perform an operation is to write the code for the operation once, then place

that code in a structure that makes the computer repeat it as many times as necessary.

 This can be done with a repetition structure, which is more commonly known as a

loop

TOPIC-9 The while Loop: A Condition-Controlled Loop

 A condition-controlled loop causes a statement or set of statements to repeat as long

as a condition is true.

 In Python, you use the while statement to write a condition-controlled loop.

 The while loop gets its name from the way it works: while a condition is true, do

some task.

 The loop has two parts: (1) a condition that is tested for a true or false value, and (2) a

statement or set of statements that is repeated as long as the condition is true.

Syntax:-

while condition:

statement

statement

etc

 For simplicity, we will refer to the first line as the while clause.

 The while clause begins with the word while, followed by a Boolean condition that

will be evaluated as either true or false.

 A colon appears after the condition.

 Beginning at the next line is a block of statements.

 When the while loop executes, the condition is tested.

 If the condition is true, the statements that appear in the block following the while

clause are executed, and the loop starts over.

 If the condition is false, the program exits the loop.

Example

count = 0

while (count < 9):

print ('The count is:', count)

count = count + 1

Output

The count is: 0

The count is: 1

The count is: 2

The count is: 3

The count is: 4

The count is: 5

The count is: 6

TOPIC-10 The for Loop: A Count-Controlled Loop

 A count-controlled loop iterates a specific number of times.

 In Python, you use the for statement to write a count-controlled loop.

 A for loop is used for iterating over a sequence (that is a list, a tuple, a dictionary, a

set, or a string).

 This is less like the for keyword in other programming languages, and works more

like an iterator method as found in other object-orientated programming languages.

 With the for loop we can execute a set of statements, once for each item in a list,

tuple, set etc.

Syntax:-

Example:-

fruits = ["apple", "banana", "cherry"]

for x in fruits:

print(x)

Output

apple

banana

cherry

for variable in [value1,

value2, etc.]:

statement

statement

etc.

Break

With the break statement we can stop the loop before it has looped through all the items

Example 2

fruits = ["apple", "banana", "cherry"]

for x in fruits:

print(x)

if x == "banana":

break

Output

apple

banana

Continue

With the continue statement we can stop the current iteration of the loop, and continue with

the next.

Example 2

fruits = ["apple", "banana", "cherry"]

for x in fruits:

if x == "banana":

continue

print(x)

Output

apple

cherry

Range

To loop through a set of code a specified number of times, we can use the range() function,

The range() function returns a sequence of numbers, starting from 0 by default, and

increments by 1 (by default), and ends at a specified number.

Example 1

for x in range(6): #start from zero to end but not including 6

print(x)

Output

1

2

3

4

5

Example 2

for x in range(2, 6): #start from the specified number (2) to end but not including 6

print(x)

Output

2

3

4

5

Example 3

for x in range(3, 31, 3):

print(x)

Output

3

6

9

12

15

18

21

24

27

30

start from the specified number (3) to end but not including 31 and the third value indicate

the increment of number here we have given 3 which means the value would go from 3, 6, to

30.

TOPIC-11 Sentinels

 A sentinel is a special value that marks the end of a sequence of values.

 Consider the following scenario: You are designing a program that will use a loop to

process a long sequence of values. At the time you are designing the program, you do

not know the number of values that will be in the sequence. In fact, the number of

values in the sequence could be different each time the program is executed. What is

the best way to design such a loop?

 Here are some techniques with the disadvantages of using them when processing a

long list of values:

 Simply ask the user, at the end of each loop iteration, if there is another value to

process. If the sequence of values is long, however, asking this question at the end

of each loop iteration might make the program cumbersome for the user.

 Ask the user at the beginning of the program how many items are in the sequence.

This might also inconvenience the user, however. If the sequence is very long, and

the user does not know the number of items it contains, it will require the user to

count them.

 When processing a long sequence of values with a loop, perhaps a better technique

is to use a sentinel. A sentinel is a special value that marks the end of a sequence of

items. When a program reads the sentinel value, it knows it has reached the end of

the sequence, so the loop terminates.

TOPIC-12 Input Validation Loops

Input validation is the process of inspecting data that has been input to a program, to make

sure it is valid before it is used in a computation. Input validation is commonly done with a

loop that iterates as long as an input variable references bad data.

One of the most famous sayings among computer programmers is “garbage in, garbage out.”

This saying, sometimes abbreviated as GIGO, refers to the fact that computers cannot tell the

difference between good data and bad data. If a user provides bad data as input to a program,

the program will process that bad data and, as a result, will produce bad data as output. For

example, look at the payroll program and notice what happens in the sample run when the

user gives bad data as input.

Did you spot the bad data that was provided as input? The person receiving the paycheck will

be pleasantly surprised, because in the sample run the payroll clerk entered 400 as the number

of hours worked. The clerk probably meant to enter 40, because there are not 400 hours in a

week. The computer, however, is unaware of this fact, and the program processed the bad

data just as if it were good data. Can you think of other types of input that can be given to this

program that will result in bad output? One example is a negative number entered for the

hours worked; another is an invalid hourly pay rate.

Let’s consider an example. Suppose you are designing a program that reads a test score and

you want to make sure the user does not enter a value less than 0. The following code shows

how you can use an input validation loop to reject any input value that is less than 0.

Example

score = int(input('Enter a test score: ')

while score < 0:

print('ERROR: The score cannot be negative.')

score = int(input('Enter the correct score: '))

This code first prompts the user to enter a test score (this is the priming read), then the while

loop executes. Recall that the while loop is a pre-test loop, which means it tests the

expression score < 0 before performing an iteration. If the user entered a valid test score, this

expression will be false, and the loop will not iterate. If the test score is invalid, however, the

expression will be true, and the loop’s block of statements will execute. The loop displays an

error message and prompts the user to enter the correct test score. The loop will continue to

iterate until the user enters a valid test score.

TOPIC-13 Nested Loops

 A nested loop is a loop inside the body of the outer loop.

 The inner or outer loop can be any type, such as a while loop or for loop.

 For example, the outer for loop can contain a while loop and vice versa.

 The outer loop can contain more than one inner loop. There is no limitation on the

chaining of loops.

 In the nested loop, the number of iterations will be equal to the number of iterations

in the outer loop multiplied by the iterations in the inner loop.

 In each iteration of the outer loop inner loop execute all its iteration. For each

iteration of an outer loop the inner loop re-start and completes its execution before

the outer loop can continue to its next iteration

 Nested loops are typically used for working with multidimensional data structures,

such as printing two-dimensional arrays, iterating a list that contains a nested list.

Syntax:-

Example

for i in range(1, 11):

for j in range(1, 11):

print(i * j, end=' ')

print()

In the above example, we are using a for loop inside a for loop. In this example, we are

printing a multiplication table of the first ten numbers.

 The outer for loop uses the range() function to iterate over the first ten numbers

 The inner for loop will execute ten times for each outer number

 In the body of the inner loop, we will print the multiplication of the outer number

and current number

outer for loop

for element in

sequence:

inner for loop

for element in

sequence:

body of inner for loop

 The inner loop is nothing but a body of an outer loop.

Output

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

 In this program, the outer for loop is iterate numbers from 1 to 10. The range()

return 10 numbers. So total number of iteration of the outer loop is 10.

 In the first iteration of the nested loop, the number is 1. In the next, it 2. and so on

till 10.

 Next, For each iteration of the outer loop, the inner loop will execute ten times. The

inner loop will also execute ten times because we are printing multiplication table

up to ten.

 In each iteration of an inner loop, we calculated the multiplication of two numbers.

Nested Loop to Print Pattern

Another most common use of nested loop is to print various star and number patterns.

Example

rows = 5

for i in range(1, rows + 1):

for j in range(1, i + 1):

print("*", end=" ")

print('')

Output

*

* *

* * *

* * * *

* * * * *

 In this program, the outer loop is the number of rows print.

 The number of rows is five, so the outer loop will execute five times

 Next, the inner loop is the total number of columns in each row.

 For each iteration of the outer loop, the columns count gets incremented by 1

 In the first iteration of the outer loop, the column count is 1, in the next it 2. and so

on.

 The inner loop iteration is equal to the count of columns.

 In each iteration of an inner loop, we print star

Nested Loop to print rectangular pattern

rows = int(input('How many rows? '))

cols = int(input('How many columns? '))

for r in range(rows):

for c in range(cols):

print('*', end='')

print()

Output

How many rows? 5

How many columns? 10

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

JAMAL MOHAMED COLLEGE (AUTONOMOUS)

TIRUCHIRAPPALLI-20

DEPARTMENT OF COMPUTER APPLICATIONS

PYTHON PROGRAMMING – 20UCA5CC11

PREPARED BY

Dr. S. Peerbasha, Mr. Y. Mohammed Iqbal

&

Mr. P.U. Manimaran

Department Of Computer Applications

Jamal Mohamed College (Autonomous)

Trichy-20

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

UNIT-III

Value Returning Functions and Modules: Introduction to Value Returning

Functions: Generating Random Numbers – Writing your own value

returning functions – The math module – Storing Functions in Modules –

Files and exceptions – Introduction to File Input and Output – Using Loops

to Process Files – Processing Records - Exceptions

TOPIC-1:- INTRODUCTION TO VALUE-RETURNING FUNCTIONS

AND MODULES:

 A value-returning function is a function that returns a value back to the part of the

program that called it.

 Python, as well as most other programming languages, provides a library of

prewritten functions that perform commonly needed tasks.

 These libraries typically contain a function that generates random numbers.

 A value-returning function is a special type of function. It is like a simple function in

the following ways.

 It is a group of statements that perform a specific task.

 When you want to execute the function, you call it.

TOPIC-2:- GENERATING RANDOM NUMBERS:

 Random numbers are useful for lots of different programming tasks. The following

are just a few examples.

 Random numbers are commonly used in games. For example, computer games that let

the player roll dice use random numbers to represent the values of the dice.

 Random numbers are useful in statistical programs that must randomly select data for

analysis.

 Random numbers are commonly used in computer security to encrypt sensitive data.

 Python provides several library functions for working with random numbers. Example

 import random

 This statement causes the interpreter to load the contents of the random module into

memory.

 This makes all of the functions in the random module available to your program.

 The first random-number generating function that we will discuss is named randint.

 Because the randint function is in the random module.

 The following statement shows an example of how you might call the randint

function.

number = random.randint(1, 100)

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Sample Program

This program displays a random number in the range of 1 through 10.

import random

def main () :

Get a random number.

number= random.randint(1, 10)

Display the number.

print 'The number is ' , number

Call the main function.

main()

Program Output

The number is 7

number= random.randrange(5, 10)

 When this statement executes, a random number in the range of 5 through 9 will be

assigned to number.

 The following statement specifies a starting value, an ending limit, and a step value:

number= random.randrange(0, 101, 10)

 In this statement the randrange function returns a randomly selected value from the

following sequence of numbers:

[0, 10, 20, 30, 40, 50, 60, 70, 80, 9O, 100]

 Both the randint and the randrange functions return an integer number.

 The random function returns, however, returns a random floating-point number.

 You do not pass any arguments to the random function.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 When you call it, it returns a random floating point number in the range of 0.0 up to

1.0 (but not including 1.0).

Here is an example:

number= random.random()

The uniform function also returns a random floating-point number, but allows you to specify

the range of values to select from. Here is an example:

number= random.uniform(l.0, 10.0)

In this statement the uniform function returns a random floating-point number in the range of

1.0 through 10.0 and assigns it to the number variable.

TOPIC-3: WRITING OWN VALUE-RETURNING FUNCTIONS

 A value-returning function has a return statement that returns a value back to the part

of the program that called it.

 You write a value-returning function in the same way that you write a simple

function, with one exception: a value-returning function must have a return statement.

Here is the general format of a value-returning function definition in Python:

def function-name () :

statement

statement

etc.

return expression

Here is a simple example of a value-returning function:

Example

def sum(num1, num2) :

result = numl + num2

return result

value = sum(10,20)

print(value)

Output

30

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Returning Multiple Values

 The examples of value-returning functions that we have looked at so far return a

single value.

 In Python, however, you are not limited to returning only one value.

 You can specify multiple expressions separated by commas after the return statement,

as shown in this general format:

return expressionl, expression2, etc.

 As an example, look at the following definition for a function named get - name.

 The function prompts the user to enter his or her first and last names.

 These names are stored in two local variables: first and last.

 The return statement returns both of the variables.

def get-name():

 # Get the user's first and last names.

first = raw-input('Enter your first name: ')

last = raw-input('Enter your last name: ')

 # Return both names.

return first, last

 When you call this function in an assignment statement, you need to use two variables

on the left side of the = operator. Here is an example:

first-name, last-name = get-name()

TOPIC-4: MATH MODULE

 The Python standard library's math module contains numerous functions that can be

used in mathematical calculations.

 The math module in the Python standard library contains several functions that are

useful for performing mathematical operations.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 These functions typically accept one or more values as arguments, perform a

mathematical operation using the arguments, and return the result.

 For example, one of the functions is named sqrt.

 The sqrt function accepts an argument and returns the square root of the argument.

 Here is an example of how it is used:

result = math.sqrt(l6)

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

TOPIC-5:- STORING FUNCTIONS IN MODULES

 A module is a file that contains Python code.

 Large programs are easier to debug and maintain when they are divided into modules.

 As your programs become larger and more complex, the need to organize your code

becomes greater.

 You have already learned that a large and complex program should be divided into

functions that each performs a specific task.

 As you write more and more functions in a program, you should consider organizing

the functions by storing them in modules.

 A module is simply a file that contains Python code.

 When you break a program into modules, each module should contain functions that

perform related tasks.

 The circle module contains two function definitions: area (which returns the area of a

circle), and circumference (which returns the circumference of a circle).

The circle module has functions that perform calculations related to circles.

import math

 # The area function accepts a circle's radius as an argument and returns the area of the

circle.

def area(radius):

return math.pi * radius**2

The circumference function accepts a circle's radius and returns the circle's

circumference.

def circumference(radius):

return 2 * math.pi * radius

The rectangle module contains two function definitions: area (which returns the area of a

rectangle), and perimeter (which returns the perimeter of a rectangle.)

The rectangle module has functions that perform calculations related to rectangles.

The area function accepts a rectangle's width and # length as arguments and returns

the rectangle's area.

def area(width, length):

return width * length

The perimeter function accepts a rectangle's width and length as arguments and

returns the rectangle's perimeter.

def perimeter(width, length):

return 2 * (width + length)

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 Notice both of these files contain function definitions, but they do not contain code

that calls the functions. That will be done by the program or programs that import

these modules.

 Before continuing, we should mention the following things about module names:

 A module’s file name should end in .py. If the module’s file name does not end in .py,

you will not be able to import it into other programs.

 A module’s name cannot be the same as a Python keyword. An error would occur, for

example, if you named a module for.

 To use these modules in a program, you import them with the import statement. Here

is an example of how we would import the circle module:

import circle

import rectangle

for example

circle.area(20)

circle.circumference(10)

rectangle.perimeter(23)

FILES AND EXCEPTIONS

TOPIC-6 INTRODUCTION TO FILE INPUT AND OUTPUT

 When a program needs to save data for later use, it writes the data in a file.

 The data can be read from the file at a later time.

 The programs you have written so far require the user to renter data each time the

program runs, because data that is stored in RAM (referenced by variables) disappears

once the program stops running.

 If a program is to retain data between the times it runs, it must have a way of saving

it. Data is saved in a file, which is usually stored on a computer's disk.

 Once the data is saved in a file, it will remain there after the program stops running.

 Data that is stored in a file can be retrieved and used at a later time.

 Most of the commercial software packages that you use on a day-to-day basis store

data in files.

 The following are a few examples.

Word processors.

 Word processing programs are used to write letters, memos, reports, and other

documents.

 The documents are then saved in files so they can be edited and printed.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Web browsers.

 Sometimes when you visit a Web page, the browser stores a small file known

as a cookie on your computer.

 Cookies typically contain information about the browsing session, such as the

contents of a shopping cart.

There are always three steps that must be taken when a file is used by a program.

 Open the file-Opening a file creates a connection between the file and the program.

Opening an output file usually creates the file on the disk and allows the program to

write data to it. Opening an input file allows the program to read data from the file.

 Process the file-In this step data is either written to the file (if it is an output file) or

read from the file (if it is an input file).

 Close the file-When the program is finished using the file, the file must be closed.

Closing a file disconnects the file from the program.

Opening a File

 The open function in Python to open a file.

 The open function creates a file object and associates it with a file on the disk.

 Here is the general format of how the open function is used:

file-variable = open (filename, mode)

In the general format:

file - variable is the name of the variable that will reference the file object.

filename is a string specifying the name of the file.

mode is a string specifying the mode (reading, writing, etc.) in which the file will be opened.

For example, suppose the file customers.txt contains customer data, and we want to open for

reading. Here is an example of how we would call the open function:

customer-file = open('cusomters.txt', 'r')

Writing Data to a File

 A method is a function that belongs to an object, and performs some operation using

that object.

 Once you have opened a file, you use the file object's methods to perform operations

on the file.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 For example, file objects have a method named write that can be used to write data to

a file.

 Here is the general format of how you call the write method:

File_variable.write(string)

 In the format, file variable is a variable that references a file object, and string is a

string that will be written to the file.

 The file must be opened for writing (using the w or I a mode) or an error will occur.

 Let's assume that customer - file references a file object, and the file was opened for

writing with the w mode.

 Here is an example of how we would write the string 'Charles Pace' to the file:

 customer-file.write('Charles Pace')

The following code shows another example:

name = 'Charles Pace'

customer-file.write(name)

 The second statement writes the value referenced by the name variable to the file

associated with customer - file.

 In this case, it would write the string 'Charles Pace' to the file.

Reading Data from a File

 If a file has been opened for reading (using the r mode) you can use the file object's

read method to read its entire contents into memory.

 When you call the read method, it returns the file's contents as a string.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

TOPIC-7 USING LOOP TO PROCESS FILE

 Files usually hold large amounts of data, and programs typically use a loop to process

the data in a file.

 Although some programs use files to store only small amounts of data, files are

typically used to hold large collections of data.

 When a program uses a file to write or read a large amount of data, a loop is typically

involved.

 For example, the first program gets sales amounts for a series of days from the user

and writes those amounts to a file named sales.txt.

 The user specifies the number of days of sales data he or she needs to enter.

 In the sample run of the program, the user enters sales amounts for five days.

 It shows the contents of the sales. txt file containing the data entered by the user in the

sample run.

Example

def main() :

 # Get the number of days.

num-days = input('For how many days do ' + \ 7 'you have sales? ')

sales-file = open('sales.txtl, 'w')

 # Get the amount of sales for each day and write it to the file.

for count in range(1, num-days + 1) :

Get the sales for a day.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

sales = input('Enter the sales for day 8' + \ str(count) + ': ')

 # Write the sales amount to the file.

 sales-file.write(str(sales) + '\n')

Close the file.

 sales-file.close()

print 'Data written to sa1es.txt.’

Call the main function.

main ()

 The Python language also allows you to write a for loop that automatically reads line

in a file without testing for any special condition that signals the end of the file.

 The loop does not require a priming read operation, and it automatically stops when

the end of the file has been reached.

 When you simply want to read the lines in a file, one after the other, this technique is

simpler and more elegant than writing a while loop that explicitly tests for an end of

the file condition.

 Here is the general format of the loop:

for variable in file-object:

statement

statement

etc.

Example

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

TOPIC-8 PROCESSING RECORDS

 The data that is stored in a file is frequently organized in records.

 A record is a complete set of data about an item, and a field is an individual piece of

data within a record. When data is written to a file, it is often organized into records

and fields.

 A record is a complete set of data that describes one item, and a field is a single piece

of data within a record.

 For example, suppose we want to store data about employees in a file.

 The file will contain a record for each employee.

 Each record will be a collection of fields, such as name, ID number, and department.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Example

Name: Ingrid Virgo

ID: 4587

Dept: Engineering

Name: Julia Rich

ID: 4588

Dept: Research Name:

Name: Greg Young

ID: 4589

Dept : Marketing

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

TOPIC-9 EXCEPTIONS

 An exception is an error that occurs while a program is running, causing the program

to abruptly halt. You can use the try/except statement to gracefully handle exceptions.

You can prevent many exceptions from being raised by carefully coding your

program.

 For example, the below program shows how division by 0 can be prevented with a

simple if statement.

 Rather than allowing the exception to be raised, the program tests the value of num2,

and displays an error message if the value is 0.

 This is an example of gracefully avoiding an exception.

 Python, like most modern programming languages, allows you to write code that

responds to exceptions when they are raised, and prevents the program from abruptly

crashing.

 Such code is called an exception handler, and is written with the try/except statement.

 There are several ways to write a try/except statement, but the following general

format shows the simplest variation:

try:

statement

statement

etc.

exceptExceptionName :

statement

statement

etc.

 First the key word try appears, followed by a colon.

 Next, a code block appears which we will refer to as the try block.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 The try block is one or more statements that can potentially raise an exception.

 After the try block, an except clause appears.

 The except clause begins with the key word except, optionally followed by the name

of an exception, and ending with a colon.

 Beginning on the next line is a block of statements that we will refer to as a handler.

 When the try/except statement executes, the statements in the try block begin to

execute.

 The following describes what happens next:

 If a statement in the try block raises an exception that is specified by the Exception

Name in an except clause, then the handler that immediately follows the except clause

executes.

 Then, the program resumes execution with the statement immediately following the

try/except statement.

 If a statement in the try block raises an exception that is not specified by the

Exception Name in an except clause, then the program will halt with a traceback error

message.

 If the statements in the try block execute without raising an exception, then any

except clauses and handlers in the statement are skipped and the program resumes

execution with the statement immediately following the try /except statement.

 Like this we can catch multiple exceptions by using different catch blocks for a single

try block.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

UNIT – IV

Lists and Tuples: Sequences – Introduction to Lists – List Slicing – Finding

items in list with the “in” operator – List Methods and Useful Built-in

functions - #Copying Lists# - Processing Lists – Two-Dimensional Lists –

Tuples – More about Strings – Basic String Operations – String Slicing –

Testing, Searching and Manipulating Strings – Dictionaries and Sets:

Dictionaries – Sets – Serializing Objects

TOPIC-1 INTRODUCTION TO LISTS

 A list is an object that contains multiple data items.

 Lists are mutable, which means that their contents can be changed during a program's

execution.

 Lists are dynamic data structures, meaning that items may be added to them or

removed from them.

 You can use indexing, slicing, and various methods to work with lists in a program.

even-numbers = [2, 4, 6, 8, 10]

 The items that are enclosed in brackets and separated by commas are the list elements.

names = ['Molly', 'Steven', 'Will', 'Alicia', 'Adriana']

 This statement creates a list of five strings.

numbers = [5, 10, 15, 20]

print numbers

When the print statement executes, it will display the elements of the list like this:

[5, 10, 15, 20]

numbers = range(5)

 In this statement the range function will return a list of integers in the range of 0 up to

(but not including) 5.

 This statement will assign the list 0, 1, 2, 3, 4 1 to the numbers variable. Here is

another example:

numbers = range(1, 10, 2)

 When you pass three arguments to the range function, the first argument is the list's

starting value, the second argument is the list's ending limit, and the third argument is

the step value.

 This statement will assign the list [1, 3, 5, 7, 9] to the numbers variable

 You can use the repetition operator (") to easily create a list with a specific number of

elements, each with the same value. Here is an example:

numbers = [O] * 5

 Alicia This statement will create a list with five elements, with each element holding

the value 0.

 This statement will assign the list [0, 0, 0, 0, 0] to the numbers variable.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Iterating Over a List with the for Loop

numbers = [99, 100, 101, 102]

for n in numbers:

print n

If we run this code, it will print:

99

100

101

102

Indexing:-

 Indexing works with lists just as it does with strings.

 Each element in a list has an index which specifies its position in the list.

 Indexing starts at 0, so the index of the first element is 0, the index of the second

element is 1, and so forth.

 The index of the last element in a list is 1 less than the number of elements in the list.

 For example, the following statement creates a list with 4 elements:

my_list = [10, 20, 30, 40]

 The indexes of the elements in this list are 0, 1, 2, and 3.

 We can print the elements of the list with the following statement:

printmy_list[0], my_list[l], my_list[2], my_list[3]

The following loop also prints the elements of the list:

index = 0

while index < 4:

printmy_list[index]

index += 1

Negative Indexing

 You can also use negative indexes with lists, to identify element positions relative to

the end of the list.

 The Python interpreter adds negative indexes to the length of the list to determine the

element position.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 The index -1 identifies the last element in a list, -2 identify the next to last element,

and so forth.

 The following code shows an example:

my_list = [10, 20, 30, 40]

print my_list[-1], my_list[-2], my_list[-3], my_list[-4]

This print statement will display:

40 30 20 10

 An IndexError exception will be raised if you use an invalid index with a list.

 For example

My_list = [10, 20, 30, 40]

index = 0

while index < 5:

print my-list[index]

index += 1

 The last time that this loop iterates, the index variable will be assigned the value 5,

which is an invalid index for the list.

 As a result, the print statement will cause an IndexError exception to be raised.

 When you pass a list as an argument, the len function returns the number of elements

in the list.

myLlist = [10, 20, 30, 40]

index = 0

while index <len(my-list) :

print my-list[index]

index += 1

TOPIC-2: LIST SLICING

 Slicing operations work with lists just as they do with strings.

 For example, suppose we create the following list:

 days = ['Sunday', 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday']

 The following statement uses a slicing expression to get the elements from indexes 2

up to, but not including, 5:

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

mid-days = days[2:5]

 After this statement executes the mid - days variable will reference the following list:

 ['Tuesday', 'Wednesday', 'Thursday'].

TOPIC-3 FINDING ITEMS IN A LIST WITH ‘IN’ AND ‘NOT IN‘

 You can use the in operator to determine whether an item is contained in a list.

This program demonstrates the ‘in’ operator used with a list.

def main() :

Create a list of product numbers.

prod_nums = ['V475', 'F987', 'Q143', 'R688']

#Get a product number to search for.

search = raw-input('Enter a product number: ')

Determine whether the product number is in the list.

if search in prod_nums:

print search, 'was found in the list.'

else:

print search, 'was not found in the list. '

Call the main function.

main()

Output

Enter a product number: Q143

Q143 was found in the list

Enter a product number: 8000

8000 was found in the list

You can use the not in operator to determine whether an item is not in a list.

Here is an example:

if search not in prod_nums:

print search, 'was not found in the list.'

else:

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

print search, 'was found in the list. '

 List Are Mutable.

 Unlike strings, lists in Python are mutable, which means their elements can be

changed.

 Consequently, an expression in the form list [index] can appear on the left side of an

assignment operator.

 The following code shows an example:

numbers = [1, 2, 3, 4, 5]

print numbers

numbers[0] = 99

print numbers

The statement in line 2 will display:

 [1, 2, 3, 4, 5]

The statement in line 3 assigns 99 to numbers [0].

This changes the first value in the list to 99.

When the statement in line 4 executes it will display:

 [99, 2, 3,4,5]

TOPIC-4 LIST METHODS

1. append()

 To add items in a list at the end

Syntax:

samplelist.append(Item)

Example:

mylist.append(“Apple”)

2. index()

 It returns the index of the first occurrence element in a list.

Syntax:

index(Item)

Example:

index(“Apple”)

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

3. insert()

 It is used to insert items in the list at the specified index.

Syntax:

index(Item)

Example:

index(“Apple”)

4. sort()

 It sorts the items in the list in ascending order (from lowest to highest).

Syntax:

sort()

5. remove()

 It removes the first occurrence of item from the list.

Syntax:

remove(Item)

Example:

remove(“Apple”)

6. reverse()

 It reverses the order of the item in a list.

Syntax:

Samplelist.reverse()

Example:

My_list.reverse()

Example

This program demonstrates how the append

method can be used to add items to a list.

def main () :

 # First, create an empty list.

name-list = []

 # Create a variable to control the loop.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

again = 'Y'

 # Add some names to the list.

whileagain.upper() == 'Y':

 # Get a name from the user.

name = raw-input (' Enter a name: ')

 # Append the name to the list.

 name-list.append(name)

 # Add another one?

print 'Do you want to add another name?'

again = raw-input('Y = yes, anything else = no: ')

 # Display the names that were entered.

print 'Here are the names you entered.'

for name in name-list:

print name

 # Call the main function.

main()

Output

Enter a name: Dr. S. Peerbasha

Do you want to add another name?

'Y = yes, anything else = no: y

Enter a name: Mr. Y. Mohammed Iqbal

Do you want to add another name?

'Y = yes, anything else = no: y

Enter a name: Mr. P.U. Manimaran

Do you want to add another name?

'Y = yes, anything else = no: n

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Here are the names you entered

Dr. S. Peerbasha

Mr. Y. Mohammed Iqbal

Mr. P.U. Manimaran

Example 2

name_list = [‘Peerbasha’, ‘Iqbal’, ‘Basheer’, ‘Shabeer’]

name_list[3] = ‘Kamal’

print(name_list) O/P:- [‘Peerbasha’, ‘Iqbal’, ‘Basheer’, ‘Kamal’]

name_list.index(‘Basheer’) O/P:- 2

name_list.insert(0,’Jamal’) O/P :- [‘Jamal’, ‘Peerbasha’, ‘Iqbal’, ‘Basheer’, ‘Kamal’]

name_list.sort() O/P::- [‘Basheer’,’Iqbal’,’Jamal’,’Kamal’,’Peerbasha’]

name_list.remove(‘Peerbasha’)

print(name_list) O/P:-:- [‘Basheer’,’Iqbal’,’Jamal’,’Kamal’]

name_list.reverse() O/P:- [‘Kamal’,’Jamal’,’Iqbal’,’Basheer]

TOPIC-5: PYTHON BUILT IN FUNCTIONS

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

TOPIC-6 COPYING LIST

 A list can be copied into another list.

Example

List1 = [1,2,3,4]

List2 = List1

print(List1)

print(List2)

Output

[1,2,3,4]

[1,2,3,4]

TOPIC-7 PROCESSING LISTS

 Working with lists is very common.

 Python is very adept at processing lists

>>> a = [1, 2, 3, 4, 5]

>>> sum(a)

15

>>> a[0:3]

[1, 2, 3]

>>> a * 2

[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]

>>> min(a)

1

TOPIC-8 TWO DIMENSIONAL LISTS

 Lists can contain other lists as elements.

 A typical use of such nested (or multidimensional) lists is to represent tables of values

consisting of information arranged in rows and columns.

 To identify a particular table element, we specify two indices—by convention, the

first identifies the element’s row, the second the element’s column.

 Lists that require two indices to identify an element are called two-dimensional

lists (or double-indexed lists or double-subscripted lists).

 Multidimensional lists can have more than two indices.

 Here, we introduce two-dimensional lists.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Creating a Two-Dimensional List

Consider a two-dimensional list with three rows and four columns (i.e., a 3-by-4 list) that

might represent the grades of three students who each took four exams in a course:

In [1]: a = [[77, 68, 86, 73], [96, 87, 89, 81], [70, 90, 86, 81]]

Writing the list as follows makes its row and column tabular structure clearer:

a = [[77, 68, 86, 73], # first student's grades
 [96, 87, 89, 81], # second student's grades
 [70, 90, 86, 81]] # third student's grades

Illustrating a Two-Dimensional List

The diagram below shows the list a, with its rows and columns of exam grade values:

Identifying the Elements in a Two-Dimensional List

The following diagram shows the names of list a’s elements:

 Every element is identified by a name of the form a[i][j]—a is the list’s name,

and i and j are the indices that uniquely identify each element’s row and column,

respectively.

 The element names in row 0 all have 0 as the first index.

 The element names in column 3 all have 3 as the second index.

In the two-dimensional list a:

77, 68, 86 and 73 initialize a[0][0], a[0][1], a[0][2] and a[0][3], respectively,

96, 87, 89 and 81 initialize a[1][0], a[1][1], a[1][2] and a[1][3], respectively, and

javascript:popUp('/content/images/chap5_9780135224335/elementLinks/img_126-01_alt.jpg')
javascript:popUp('/content/images/chap5_9780135224335/elementLinks/img_126-02_alt.jpg')

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

70, 90, 86 and 81 initialize a[2][0], a[2][1], a[2][2] and a[2][3], respectively.

 A list with m rows and n columns is called an m-by-n list and has m × n elements.

 The following nested for statement outputs the rows of the preceding two-dimensional

list one row at a time:

In [2]: for row in a:

 ...: for item in row:

 ...: print(item, end=' ')

 ...: print()

 ...:

77 68 86 73

96 87 89 81

TOPIC-9 TUPLES

 Tuples are used to store multiple items in a single variable.

 Tuple is one of 4 built-in data types in Python used to store collections of data, the

other 3 are List, Set, and Dictionary, all with different qualities and usage.

 A tuple is a collection which is ordered and unchangeable.

 Tuples are written with round brackets.

mytuple = ("apple", "banana", "cherry")

Create a Tuple:

thistuple = ("apple", "banana", "cherry")

print(thistuple)

Tuple Items

 Tuple items are ordered, unchangeable, and allow duplicate values.

 Tuple items are indexed, the first item has index [0], the second item has

index [1] etc.

Ordered

 When we say that tuples are ordered, it means that the items have a defined order, and

that order will not change.

Unchangeable

 Tuples are unchangeable, meaning that we cannot change, add or remove items after

the tuple has been created.

Allow Duplicates

 Since tuples are indexed, they can have items with the same value:

https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Example

Tuples allow duplicate values:

thistuple = ("apple", "banana", "cherry", "apple", "cherry")
print(thistuple)

Access Tuple Items

You can access tuple items by referring to the index number, inside square brackets:

Example

Print the second item in the tuple:

thistuple = ("apple", "banana", "cherry")

print(thistuple[1])

Negative Indexing

Negative indexing means start from the end.

-1 refers to the last item, -2 refers to the second last item etc.

Example

Print the last item of the tuple:

thistuple = ("apple", "banana", "cherry")
print(thistuple[-1])

MORE ABOUT STRINGS:

TOPIC-10 BASIC STRING OPERATIONS:

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Program

def main() :

 # Get a string from the user.

user - string = raw-input('Enter a string: ')

print 'This is what I found about that string: '

 # Test the string.

if user-string.isalnum():

print 'The string is alphanumeric.'

if user-string.isdigit():

print 'The string contains only digits.'

if user-string.isalpha():

print 'The string contains only alphabetic characters.'

if user-string.isspace():

print 'The string contains only whitespace characters.'

if user-string.islower():

print 'The letters in the string are all lowercase. '

if user-string.isupper():

print 'The letters in the string are all uppercase. '

Call the string.

main()

Output:

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

TOPIC-11 STRING SLICING

 A slice is a span of items that are taken from a sequence.

 When you take a slice from a string, you get a span of characters from within the

string.

 String slices are also called substrings.

 To get a slice of a string, you write an expression in the following general format:

String[start : end]

 In the general format, start is the index of the first character in the slice, and end is the

index marking the end of the slice.

 The expression will return a string containing a copy of the characters from start up to

(but not including) end.

 For example, suppose we have the following:

full_name = ' Patty Lynn Smith '

middle_name = full_name[6:10]

 The second statement assigns the string 'Lynn to the middle_name variable.

 If you leave out the start index in a slicing expression, Python uses 0 as the starting

index. Here is an example:

full_name = 'Patty Lynn Smith'

first_name = full_name[:5]

 The second statement assigns the string ' Lynn ' to first name.

 If you leave out the end index in a slicing expression, Python uses the length of the

string as the end index. Here is an example:

full_name = 'Patty Lynn Smith'

last_name = full-name[11:]

 The second statement assigns the string Smith to first_name.

 What do you think the following code will assign to the my_string variable?

full_name = ' Patty Lynn Smith '

my_string = full_name[:]

 The second statement assigns the entire string ' Patty Lynn Smith ' to my_string.

 The statement is equivalent to:

my_string = full-name[0 : len(ful1_name)]

 The slicing examples we have seen so far get slices of consecutive characters from

strings.

 Slicing expressions can also have step value, which can cause characters to be skipped

in the string.

 Here is an example of code that uses a slicing expression with a step value:

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

print letters[0:26:2]

 The third number inside the brackets is the step value.

 A step value of 2, as used in this example, causes the slice to contain every second

character from the specified range in the string.

 The code will print the following:

 ACEGIKMOQSUWY

 You can also use negative numbers as indexes in slicing expressions to reference

positions relative to the end of the string.

 Here is an example:

full_name = ' Patty Lynn Smith '

last_name = full-name[-5:]

 Recall that Python adds a negative index to the length of a string to get the position

referenced by that index.

 The second statement in this code assigns the string ' Smith ' to the last_name

variable.

TOPIC-12 TESTING, SEARCHING AND MANIPULATING STRINGS

TESTING STRING WITH “in” AND “not in”

 In Python you can use the in operator to determine whether one string is contained in

another string.

 Here is the general format of an expression using the in operator with two strings:

string1 in string2

 string1 and string2 can be either string literals or variables referencing strings.

 The expression returns true if string1 is found in string2.

 For example, look at the following code:

text = 'Four score and seven years ago'

if 'seven' in text:

print 'The string "seven" was found.'

else :

print 'The string "seven" was not found.'

This code determines whether the string ' Four score and seven years ago ' contains

the string ' seven '. If we run this code it will display:

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

The string "seven" was found.

You can use the not in operator to determine whether one string is not contained in

another string.

Here is an example:

names = 'Bill Joanne Susan Chris Juan Katie'

if 'Pierre' not in names:

print 'Pierre was not found.'

else : print 'Pierre was found.'

If we run this code it will display:

Pierre was not found.

SEARCHING AND REPLACING

 Programs commonly need to search for substrings, or strings that appear within other

strings.

 For example, suppose you have a document opened in your word processor, and you

need to search for a word that appears somewhere in it.

 The word that you are searching for is a substring that appears inside a larger string,

the document.

DICTIONARIES AND SETS

TOPIC-13 DICTIONARIES

 A dictionary is an object that stores a collection of data.

 Each element in a dictionary has two parts: a key and a value.

 You use a key to locate a specific value.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Creating a Dictionary

 You can create a dictionary by enclosing the elements inside a set of curly braces ({}

).

 An element consists of a key, followed by a colon, followed by a value.

 The elements are separated by commas.

 The following statement shows an example:

phonebook = {'Jones':'555−1111', 'JJ':'555−2222', 'JJappa':'555−3333'}

 This statement creates a dictionary and assigns it to the phonebook variable.

 The dictionary contains the following three elements:

 The first element is 'Jones':'555−1111'. In this element, the key is 'Jones' and the value

is '555−1111'.

 The second element is 'JJ':'555−2222'. In this element, the key is 'JJ' and the value is

'555−2222'.

 The third element is 'JJaapa':'555−3333'. In this element, the key is 'JJaapa' and the

value is '555−3333'.

To retrieve a value from a dictionary, you simply write an expression in the following general

format:

dictionary_name[key]

For Example

print(Phonebook[‘Jones’])

print(Phonebook[‘JJ’])

print(Phonebook[‘JJaapa’])

Output

555-1111

555-2222

555-3333

Adding Elements to an Existing Dictionary

 Dictionaries are mutable objects.

 You can add new key-value pairs to a dictionary with an assignment statement in the

following general format:

dictionary_name[key] = value

Example

Phonebook[‘Salman’] = ‘111-1111’ #add new value

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Phonebook[‘JJaapa’] = ‘121-1212’ #changing value using key

Deleting Elements

 You can delete an existing key-value pair from a dictionary with the del statement.

 Here is the general format:

deldictionary_name[key]

Example

del Phonebook[‘JJaapa’]

Using the for Loop to Iterate over a Dictionary

 You can use the for loop in the following general format to iterate over all the keys in a

dictionary:

for var in dictionary:

statement

statement

etc

Example

for key in Phonebook:

print(key, Phonebook[key])

Output:-

Jones 555-1111

JJ 555-2222

Salman 111-1111

SOME DICTIONARY METHODS

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

TOPIC-14 SETS

 A set contains a collection of unique values and works like a mathematical set.

 A set is an object that stores a collection of data in the same way as mathematical sets.

 Here are some important things to know about sets:

 All the elements in a set must be unique. No two elements can have the

same value.

 Sets are unordered, which means that the elements in a set are not

stored in any particular order.

 The elements that are stored in a set can be of different data types.

Creating a Set

 To create a set, you have to call the built-in set function.

 Here is an example of how you create an empty set:

myset = set()

 If you pass a string as an argument to the set function, each individual character in the

string becomes a member of the set.

 Here is an example:

myset = set('abc')

 After this statement executes, the myset variable will reference a set containing the

elements 'a', 'b', and 'c'.

 Sets cannot contain duplicate elements.

 If you pass an argument containing duplicate elements to the set function, only one of

the duplicated elements will appear in the set.

 Here is an example:

myset = set('aaabc')

 The character 'a' appears multiple times in the string, but it will appear only once in

the set.

 After this statement executes, the myset variable will reference a set containing the

elements 'a', 'b', and 'c'.

 What if you want to create a set in which each element is a string containing more

than one character?

 For example, how would you create a set containing the elements 'one', 'two', and

'three'?

 The following code does not accomplish the task, because you can pass no more than

one argument to the set function:

 # This is an ERROR!

myset = set('one', 'two', 'three')

The following does not accomplish the task either:

This does not do what we intend.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

myset = set('one two three')

 After this statement executes, the myset variable will reference a set containing the

elements 'o', 'n', 'e', ' ', 't', 'w', 'h', and 'r'.

 To create the set that we want, we have to pass a list containing the strings ‘one’,

‘two’, and ‘three’ as an argument to the set function.

 Here is an example:

 # OK, this works.

myset = set(['one', 'two', 'three'])

Adding and Removing Elements

 Sets are mutable objects, so you can add items to them and remove items from them.

 You use the add method to add an element to a set.

To add

To remove

 You can remove an item from a set with either the remove method or the discard

method.

 You pass the item that you want to remove as an argument to either method, and that

item is removed from the set.

 The only difference between the two methods is how they behave when the specified

item is not found in the set.

 The remove method raises a KeyError exception, but the discard method does not

raise an exception.

myset.remove(1)

myset.remove(2)

Using the for Loop to Iterate over a Set

 You can use the ‘for loop’ in the following general format to iterate over all the

elements in a set:

for var in set:

statement

statement

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

etc.

 In the general format, var is the name of a variable and set is the name of a set.

 This loop iterates once for each element in the set.

 Each time the loop iterates, var is assigned an element.

 The following interactive session demonstrates

TOPIC-15 SERIALIZING OBJECTS

 Serializing an object is the process of converting the object to a stream of bytes that

can be saved to a file for later retrieval.

 In Python, object serialization is called pickling.

 In Python, the process of serializing an object is referred to as pickling.

 The Python standard library provides a module named pickle that has various

functions for serializing, or pickling, objects.

 Once you import the pickle module, you perform the following steps to pickle an

object:

 You open a file for binary writing.

 You call the pickle module’s dump method to pickle the object and write it to the

specified file.

 After you have pickled all the objects that you want to save to the file, you close the

file.

 Let’s take a more detailed look at these steps.

 To open a file for binary writing, you use 'wb' as the mode when you call the open

function.

 For example, the following statement opens a file named mydata.dat for binary

writing:

outputfile = open('mydata.dat', 'wb')

 Once you have opened a file for binary writing, you call the pickle module’s dump

function. Here is the general format of the dump method:

pickle.dump(object, file)

 In the general format, object is a variable that references the object you want to

pickle, and file is a variable that references a file object.

 After the function executes, the object referenced by object will be serialized and

written to the file.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 (You can pickle just about any type of object, including lists, tuples, dictionaries, sets,

strings, integers, and floating point numbers).

 You can save as many pickled objects as you want to a file.

 When you are finished, you call the file object’s close method to close the file.

 The following interactive session provides a simple demonstration of pickling a

dictionary:

Let’s take a closer look at the program:

 Line 1 imports the pickle module.

 Lines 2 through 4 create a dictionary containing names (as keys) and phone numbers

(as values).

 Line 5 opens a file named phonebook.dat for binary writing.

 Line 6 calls the pickle module’s dump function to serialize the phonebook dictionary

and write it to the phonebook.dat file.

 Line 7 closes the phonebook.dat file.

 At some point, you will need to retrieve, or unpickle, the objects that you have

pickled. Here are the steps that you perform:

 You open a file for binary reading.

 You call the pickle module’s load function to retrieve an object from the file and

unpickle it.

 After you have unpickled all the objects that you want from the file, you close the file.

 To open a file for binary reading, you use 'rb' as the mode when you call the open

function.

 For example, the following statement opens a file named mydata.dat for binary

reading:

inputfile = open('mydata.dat', 'rb')

 Once you have opened a file for binary reading, you call the pickle module’s load

function.

 Here is the general format of a statement that calls the load function:

object = pickle.load(file)

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 In the general format, object is a variable, and file is a variable that references a file

object.

 After the function executes, the object variable will reference an object that was

retrieved from the file and unpickled.

 You can unpickle as many objects as necessary from the file. (If you try to read past

the end of the file, the load function will raise an EOFError exception.)

 When you are finished, you call the file object’s close method to close the file.

 The following interactive session provides a simple demonstration of unpickling the

phonebook dictionary that was pickled in the previous session:

Let’s take a closer look at the program:

 Line 1 imports the pickle module.

 Line 2 opens a file named phonebook.dat for binary reading.

 Line 3 calls the pickle module’s load function to retrieve and unpickle an object from

the phonebook.dat file. The resulting object is assigned to the pb variable.

 Line 4 displays the dictionary referenced by the pb variable. The output is shown in

line 5.

 Line 6 closes the phonebook.dat file.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

UNIT – V

Classes and Object - Oriented Programming

Classes and Object Oriented Programming: Procedural and Object-

Oriented Programming – Classes – Working with instances – Techniques

for designing classes - Inheritance: Introduction to Inheritance -

Polymorphism - Getting MySQL for Python - # import MySQL for Python

- MySQLDb - Connecting with a Database

TOPIC-1: PROCEDURAL AND OBJECT-ORIENTED PROGRAMMING

 Procedural programming is a method of writing software.

 It is a programming practice centered on the procedures or actions that take place in a

program.

 Object-oriented programming is centered on objects.

 Objects are created from abstract data types that encapsulate data and functions

together.

 There are primarily two methods of programming in use today: procedural and object

oriented.

 The earliest programming languages were procedural, meaning a program was made

of one or more procedures.

 You can think of a procedure simply as a function that performs a specific task such

as gathering input from the user, performing calculations, reading or writing files,

displaying output, and so on.

 The programs that you have written so far have been procedural in nature.

 Typically, procedures operate on data items that are separate from the procedures.

 In a procedural program, the data items are commonly passed from one procedure to

another.

Object Reusability

 In addition to solving the problems of code and data separation, the use of OOP has

also been encouraged by the trend of object reusability.

 An object is not a stand-alone program, but is used by programs that need its services.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

TOPIC-2 CLASSES

 A class is code that specifies the data attributes and methods for a particular type of

object.

 The programmer determines the data attributes and methods that are necessary, and

then creates a class.

 A class is code that specifies the data attributes and methods of a particular type of

object.

 Think of a class as a “blueprint” from which objects may be created.

 It serves a similar purpose as the blueprint for a house.

Class Definitions

 To create a class, you write a class definition.

 A class definition is a set of statements that define a class’s methods and data

attributes.

 Let’s look at a simple example.

 Suppose we are writing a program to simulate the tossing of a coin.

 In the program, we need to repeatedly toss the coin and each time determine whether

it landed heads up or tails up.

 Taking an object-oriented approach, we will write a class named Coin that can

perform the behaviours of the coin.

Example

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def myfunc(self):

 print("Hello my name is " + self.name)

p1 = Person("Dr. S. Peerbasha", 35)

p1.myfunc()

Output

Hello my name is John

The __init__() Function

 All classes have a function called __init__(), which is always executed when the class

is being initiated.

 Use the __init__() function to assign values to object properties, or other operations

that are necessary to do when the object is being created.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 The __init__() function is called automatically every time the class is being used to

create a new object.

Example

Create a class named Person, use the __init__() function to assign values for name and age:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("Dr. S. Peerbasha", 35)

print(p1.name)

print(p1.age)

Output

Dr. S. Peerbasha

35

The self Parameter

 The self parameter is a reference to the current instance of the class, and is used to

access variables that belong to the class.

 It does not have to be named self, you can call it whatever you like, but it has to be the

first parameter of any function in the class.

The __str__() Function

o The __str__() function controls what should be returned when the class object

is represented as a string.

o If the __str__() function is not set, the string representation of the object is

returned.

Example

The string representation of an object WITHOUT the __str__() function:

class Person.

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("Dr. S. Peerbasha", 35)

print(p1)

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Output

<__main__.Person object at 0x146516613100>

Example

The string representation of an object WITH the __str__() function.

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def __str__(self):

 return f"{self.name}({self.age})"

p1 = Person("Dr. S. Peerbasha", 35)

print(p1)

Output

Dr. S. Peerbasha(35)

TOPIC-3: WORKING WITH INSTANCES

 Each instance of a class has its own set of data attributes.

 When a method uses the self parameter to create an attribute, the attribute belongs to

the specific object that self reference.

 We call these attributes instance attributes because they belong to a specific instance

of the class.

 It is possible to create many instances of the same class in a program.

 Each instance will then have its own set of attributes.

 For example, The below program creates three instances of the Coin class.

 Each instance has its own _ _sideup attribute.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Program Output

I have three coins with these sides up:

Heads

Heads

Heads

I am tossing all three coins ...

Now here are the sides that are up:

Tails

Tails

In lines 8 through 10, the following statements create three objects, each an instance of the

Coin class:

 coin1 = coin.Coin()

 coin2 = coin.Coin()

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 coin3 = coin.Coin()

 The coin1, coin2, and coin3 variables reference the three objects after these

statements execute.

 Notice each object has its own _ _sideup attribute. Lines 14 through 16 display the

values returned from each object’s get_sideup method.

The coin1, coin2, and coin3 variables reference three Coin objects

Then, the statements in lines 22 through 24 call each object’s toss method:

coin1.toss()

coin2.toss()

coin3.toss()

The objects after the toss method

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

TOPIC-4 TECHNIQUES FOR DESIGNING CLASSES

 When designing a class, it is often helpful to draw a UML diagram.

 UML stands for Unified Modeling Language.

 It provides a set of standard diagrams for graphically depicting object-oriented

systems.

 Below image shows the general layout of a UML diagram for a class.

 Notice the diagram is a box that is divided into three sections.

 The top section is where you write the name of the class.

 The middle section holds a list of the class’s data attributes.

 The bottom section holds a list of the class’s methods

Diagram for the Coin Class

Diagram for the CellPhone class

 When developing an object-oriented program, one of your first tasks is to identify the

classes that you will need to create.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 Typically, your goal is to identify the different types of real-world objects that are

present in the problem, then create classes for those types of objects within your

application.

 Over the years, software professionals have developed numerous techniques for

finding the classes in a given problem.

 One simple and popular technique involves the following steps:

 Get a written description of the problem domain.

 Identify all the nouns (including pronouns and noun phrases) in the

description. Each of these is a potential class.

 Refine the list to include only the classes that are relevant to the

problem

TOPIC-5 INHERITANCE

 Inheritance allows a new class to extend an existing class.

 The new class inherits the members of the class it extends.

 Inheritance is an important aspect of the object-oriented paradigm.

 Inheritance provides code reusability to the program because we can use an existing

class to create a new class instead of creating it from scratch.

 In inheritance, the child class acquires the properties and can access all the data

members and functions defined in the parent class.

 A child class can also provide its specific implementation to the functions of the

parent class. In this section of the tutorial, we will discuss inheritance in detail.

 In python, a derived class can inherit base class by just mentioning the base in the

bracket after the derived class name.

 Consider the following syntax to inherit a base class into the derived class.

Syntax:

class derived-class(base class):

<class-suite>

 A class can inherit multiple classes by mentioning all of them inside the bracket.

Consider the following syntax.

class derive-class(<base class 1>, <base class 2>, <base class n>):

<class - suite>

Example

class Animal:

 def speak(self):

 print("Animal Speaking")

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

#child class Dog inherits the base class Animal

class Dog(Animal):

 def bark(self):

 print("dog barking")

d = Dog()

d.bark()

d.speak()

Output:-

dog barking

Animal Speaking

MULTI-LEVEL INHERITANCE

 Multi-Level inheritance is possible in python like other object-oriented languages.

 Multi-level inheritance is archived when a derived class inherits another derived class.

 There is no limit on the number of levels up to which, the multi-level inheritance is

archived in python.

Syntax

class class1:

 <class-suite>

class class2(class1):

 <class suite>

class class3(class2):

 <class suite>

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Example

class Animal:

 def speak(self):

 print("Animal Speaking")

#The child class Dog inherits the base class Animal

class Dog(Animal):

 def bark(self):

 print("dog barking")

#The child class Dogchild inherits another child class Dog

class DogChild(Dog):

 def eat(self):

 print("Eating bread...")

d = DogChild()

d.bark()

d.speak()

d.eat()

Output

dog barking

Animal Speaking

Eating bread...

MULTIPLE INHERITANCE

Python provides us the flexibility to inherit multiple base classes in the child class.

The syntax to perform multiple inheritance is given below.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Syntax

class Base1:

 <class-suite>

class Base2:

 <class-suite>

. . .

class BaseN:

 <class-suite>

class Derived(Base1, Base2, BaseN):

 <class-suite>

Example

class Calculation1:

 def Summation(self,a,b):

 return a+b;

class Calculation2:

 def Multiplication(self,a,b):

 return a*b;

class Derived(Calculation1,Calculation2):

 def Divide(self,a,b):

 return a/b;

d = Derived()

print(d.Summation(10,20))

print(d.Multiplication(10,20))

print(d.Divide(10,20))

Output:

30

200

0.5

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

METHOD OVERRIDING

 We can provide some specific implementation of the parent class method in our child

class.

 When the parent class method is defined in the child class with some specific

implementation, then the concept is called method overriding.

 We may need to perform method overriding in the scenario where the different

definition of a parent class method is needed in the child class.

Example

class Animal:

 def speak(self):

 print("speaking")

class Dog(Animal):

 def speak(self):

 print("Barking")

d = Dog()

d.speak()

Output

Barking

DATA ABSTRACTION IN PYTHON

 Abstraction is an important aspect of object-oriented programming.

 In python, we can also perform data hiding by adding the double underscore (___) as

a prefix to the attribute which is to be hidden.

 After this, the attribute will not be visible outside of the class through the object.

Example

class Employee:

 __count = 0;

 def __init__(self):

 Employee.__count = Employee.__count+1

 def display(self):

 print("The number of employees",Employee.__count)

emp = Employee()

emp2 = Employee()

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

try:

 print(emp.__count)

finally:

 emp.display()

Output

The number of employees 2

AttributeError: 'Employee' object has no attribute '__count'

TOPIC-5: POLYMORPHISM

 Polymorphism refers to having multiple forms.

 Polymorphism is a programming term that refers to the use of the same function

name, but with different signatures, for multiple types.

Two essential ingredients of polymorphic behaviour:

 The ability to define a method in a superclass, then define a method with the same

name in a subclass.

 When a subclass method has the same name as a super class method, it is often said

that the subclass method overrides the super class method.

The ability to call the correct version of an overridden method, depending on the type of

object that is used to call it.

If a subclass object is used to call an overridden method, then the subclass’s version of the

method is the one that will execute.

If a super class object is used to call an overridden method, then the super class’s version of

the method is the one that will execute

Example of in-built polymorphic functions:

Python program for demonstrating the in-built poly-morphic functions

len() function is used for a string

print (len("Javatpoint"))

len() function is used for a list

print (len([110, 210, 130, 321]))

Output:

10

4

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Polymorphism with Inheritance:

 Polymorphism allows us to define methods in Python that are the same as methods in

the parent classes.

 In inheritance, the methods of the parent class are passed to the child class.

 It is possible to change a method that a child class has inherited from its parent class.

 This is especially useful when the method that was inherited from the parent doesn't

fit the child's class.

 We re-implement such methods in the child classes. This is Method Overriding.

Example

class Birds:

 def intro1(self):

 print("There are multiple types of birds in the world.")

 def flight1(self):

 print("Many of these birds can fly but some cannot.")

class sparrow1(Birds):

 def flight1(self):

 print("Sparrows are the bird which can fly.")

class ostrich1(Birds):

 def flight1(self):

 print("Ostriches are the birds which cannot fly.")

obj_birds = Birds()

obj_spr1 = sparrow1()

obj_ost1 = ostrich1()

obj_birds.intro1()

obj_birds.flight1()

obj_spr1.intro1()

obj_spr1.flight1()

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 obj_ost1.intro1()

obj_ost1.flight1()

Output:

There are multiple types of birds in the world.

Many of these birds can fly but some cannot.

There are multiple types of birds in the world.

Sparrows are the bird which can fly.

There are multiple types of birds in the world.

Ostriches are the birds which cannot fly.

TOPIC-6 GETTING MYSQL FOR PYTHON

Install mysql.connector

 To connect the python application with the MySQL database, we must import the

mysql.connector module in the program.

 The mysql.connector is not a built-in module that comes with the python installation.

We need to install it to get it working.

Execute the following command to install it using pip installer.

> python -m pip install mysql-connector

There are the following steps to connect a python application to our database.

1. Import mysql.connector module

2. Create the connection object.

3. Create the cursor object

4. Execute the query

5. Import MySQL Connector

To test if the installation was successful, or if you already have "MySQL Connector"

installed, create a Python page with the following content:

demo_mysql.py:

import mysql.connector

If the above code was executed with no errors, "MySQL Connector" is installed and ready to

be used.

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Create Connection

Start by creating a connection to the database.

Use the username and password from your MySQL database:

importmysql.connector

mydb = mysql.connector.connect(

 host="localhost",

 user="yourusername",

 password="yourpassword"

)

print(mydb)

Now you can start querying the database using SQL statements.

Creating a cursor object

 The cursor object can be defined as an abstraction specified in the Python DB-API

2.0.

 It facilitates us to have multiple separate working environments through the same

connection to the database.

 We can create the cursor object by calling the 'cursor' function of the connection

object.

 The cursor object is an important aspect of executing queries to the databases.

The syntax to create the cursor object is given below.

<my_cur> = conn.cursor()

Example

import mysql.connector

#Create the connection object

myconn = mysql.connector.connect(host = "localhost", user = "root",passwd = "google", data

base = "mydb")

#printing the connection object

print(myconn)

#creating the cursor object

cur = myconn.cursor()

print(cur)

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

Output:

<mysql.connector.connection.MySQLConnection object at 0x7faa17a15748>

MySQLCursor: (Nothing executed yet)

Creating the new database

The new database can be created by using the following SQL query.

> create database <database-name>

Example

import mysql.connector

#Create the connection object

myconn = mysql.connector.connect(host = "localhost", user = "root",passwd = "google")

#creating the cursor object

cur = myconn.cursor()

try:

 #creating a new database

 cur.execute("create database PythonDB2")

#getting the list of all the databases which will now include the new database PythonDB

 dbs = cur.execute("show databases")

except:

 myconn.rollback()

for x in cur:

 print(x)

myconn.close()

Output:

('EmployeeDB',)

('PythonDB',)

('Test',)

('TestDB',)

('anshika',)

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

TOPIC-7 MYSQLDb

MySQLdb is an interface for connecting to a MySQL database server from Python. It

implements the Python Database API v2.0 and is built on top of the MySQL C API.

Packages to Install

mysql-connector-python

mysql-python

If using anaconda

conda install -c anaconda mysql-python

conda install -c anaconda mysql-connector-python

else

pip install MySQL-python

pip install MySQL-python-connector

Import-Package

import MYSQLdb

How to connect to a remote MySQL database using python?

 connect(): This method is used for creating a connection to our database it has four

arguments:

1. Server Name

2. Database User Name

3. Database Password

4. Database Name

 cursor(): This method creates a cursor object that is capable of executing SQL queries

on the database.

 execute(): This method is used for executing SQL queries on the database. It takes a sql

query(as string) as an argument.

 fetchone(): This method retrieves the next row of a query result set and returns a single

sequence, or None if no more rows are available.

 lose() : This method close the database connection.

Module For Connecting To MySQL database

import MySQLdb

Function for connecting to MySQL database

def mysqlconnect():

 #Trying to connect

 try:

 db_connection= MySQLdb.connect

 ("Hostname","dbusername","password","dbname")

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

 # If connection is not successful

 except:

 print("Can't connect to database")

 return 0

 # If Connection Is Successful

 print("Connected")

 # Making Cursor Object For Query Execution

 cursor=db_connection.cursor()

 # Executing Query

 cursor.execute("SELECT CURDATE();")

 # Above Query Gives Us The Current Date

 # Fetching Data

 m = cursor.fetchone()

 # Printing Result Of Above

 print("Today's Date Is ",m[0])

 # Closing Database Connection

 db_connection.close()

Function Call For Connecting To Our Database

mysqlconnect()

Connected

Today's Date Is 2017-11-14

TOPIC-8 CONNECTING WITH A MYSQL DATABASE
 The connect() constructor creates a connection to the MySQL server and returns

a MySQLConnection object.

 The following example shows how to connect to the MySQL server:

import mysql.connector

cnx = mysql.connector.connect(user='scott', password='password',

 host='127.0.0.1',

 database='employees')

cnx.close()

It is also possible to create connection objects using connection.MySQLConnection() class:

from mysql.connector import (connection)

https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlconnection.html

Dr. S. Peerbasha Mr. Y. Mohammed Iqbal Mr. P.U. Manimaran
Department of Computer Applications, Jamal Mohamed College, Trichy-620 020

cnx = connection.MySQLConnection(user='scott', password='password',

 host='127.0.0.1',

 database='employees')

cnx.close()

Both forms (either using the connect() constructor or the class directly) are valid and

functionally equal, but using connect() is preferred and used by most examples in this

manual.

IMPORTANT QUESTIONS:-

UNIT-III

Section-B:-

1. Explain the Value-Returning Functions with necessary examples.

2. How will you generate random numbers?

3. Write a note on Math Module

4. How will you process the files using loops?

Section-C:-

1. Develop a python program that implements the concept of Files, Input and

Output.

2. Develop a python program to make use of the Exception concept.

UNIT-IV

Section-B:-

1. Explain the concept of List Slicing

2. How will you find the items in the list with the ‘in’ operator?

3. Write a python program to implements the various list methods.

4. Write a note on Two-Dimensional lists.

Section-C:-

1. Create a tuple and perform concatenation, repetition, membership, access items and

slicing operations.

2. Write a python program to sort (Ascending and Descending) a Dictionary by value.

UNIT-V

Section-B:-

1. Explain the concept of Inheritance with necessary example program.

2. Explain the various techniques for designing classes

3. Write short note on Polymorphism

4. Explain the procedural and object-oriented programming in detail.

Section-C:-

1. Prepare a Students Mark list using Class.

2. Develop a python program to find the area of a circle using class and objects.

3. Perform various database operations (Create, Insert, Delete, Update) using MQSQL.

There are no secrets to success. It is the result of

preparation, hard work and learning from the failure.

	DEPARTMENT OF COMPUTER APPLICATIONS TRICHY-20
	PREPARED BY

	TOPIC-1 INTRODUCTION
	What is Python?
	What can Python do?
	Why Python?
	Good to know
	Python Syntax Compared To Other Programming Languages
	Using Python:
	Interpreted Mode:
	Interactive Mode:
	TOPIC-2 INPUT, PROCESSING AND OUTPUT:

	TOPIC-2 Displaying Output with the print Function
	Example of print function:-
	Output:-
	Output:- (1)
	2. Double Quotes
	Output:-

	3. Both Apostrophe and Double Quotes
	Output:-
	Output:- (1)

	TOPIC-3 Comments
	Comment1.py
	Comment2.py
	Output

	TOPIC-4 Variables
	Output
	>>>30 = value
	Variable Reassignment
	Output:
	Variable Naming Rule
	Variable Name Legal or Illegal?

	TOPIC-5 Reading Input from the Keyboard
	Syntax:-
	Example
	Output:

	TOPIC-6 Functions
	Benefits of Modularizing a Program with Functions
	1. Simpler Code
	2. Code Reuse
	3. Better Testing

	TOPIC-7 Defining and Calling a Void Function
	Defining a Function
	For example
	Calling a Function

	TOPIC-8 Local Variables
	TOPIC-9: Passing Arguments to Functions
	Example
	Output:
	Example 2
	Output

	TOPIC-10 Global Variables and Global Constants
	Output
	Global Constant

	UNIT-II
	Syntax:-
	Boolean Expressions and Relational Operators
	Example:
	Output:

	TOPIC-2 The if-else Statement
	Syntax
	Example2
	Output:

	TOPI-3 Comparing String
	Output:
	Example 2
	Output: (1)
	Output: (2)

	TOPIC-4 Nested Decision Structures and the if-elif-else Statement
	Nested If else:
	Syntax:-
	Example
	Output

	TOPIC-5 The if-elif-else Statement
	Syntax:
	Output

	TOPIC-6 Logical Operators
	and:-
	Example
	Output
	Example (1)
	Output (1)
	not:-
	Example

	TOPIC-7 Boolean Variables
	TOPIC-8 Introduction to Repetition Structures
	TOPIC-9 The while Loop: A Condition-Controlled Loop
	Syntax:-
	Example
	Output

	TOPIC-10 The for Loop: A Count-Controlled Loop
	Syntax:-
	Break
	Example 2
	Continue
	Example 2 (1)
	Range
	Example 1
	Output
	Example 2 (2)
	Output (1)
	Example 3
	Output (2)

	TOPIC-11 Sentinels
	TOPIC-12 Input Validation Loops
	Example

	TOPIC-13 Nested Loops
	Syntax:-
	Example
	Output
	Nested Loop to Print Pattern
	Example (1)
	Output (1)
	* *
	* * * *
	Nested Loop to print rectangular pattern

