
SIMD COMPUTER ORGANIZATIONS 

This topic deals with interconnection networks, processing elements, memory and I/O structures.  

Implementation Models 

 Two SIMD computer models are used based on the memory distribution and addressing scheme used.  

Most SIMD computers use single control unit and distributed memories, except for a few that use 

associative memories.   The two models are Distributed memory models and Shared memory model.  

The instruction set of an SIMD computer is decoded by the array control unit.  The processing elements 

in the SIMD array are passive ALUs executing instructions broadcast from the control unit.  All PEs  must 

operate  in lockstep, synchronized by the same array controller.   

Distributed Memory Model :   Spatial parallelism is exploited in PEs in and SIMD computer.  A 

distributed memory SIMD computer consists of an array of PEs which are controlled by the same array 

control unit.  The diagram (a) shows this model.  

 

The program and data are loaded into the control memory through the host computer.   An instruction 

is sent to  the control unit for decoding.   If it is a scalar or program control operation, it will be directly 

executed by a scalar processor attached to the control unit.  If the decoded instruction is a vector 

operation, it will be broadcast to all the PEs  for parallel execution.   The partitioned data sets are 

distributed  to all the local memories attached to the PEs through a vector data bus.  The PEs  are 

interconnected by a data routing network which performs  inter PE data communications such as 

shifting, permutation and other routing operations.  The data routing network  is under program control 

through the control unit.   



The PEs are synchronized in hardware by the control unit.  Also the same instruction is executed by the 

all PEs in the same cycle.  Also the masking logic is provided  to enable or disable any PE from an 

participation in a given instruction cycle.   The Illiac IV was the early SIMD machine consist of 64 PEs with 

local memories  interconnected by  an 8 x 8 mesh with wraparound connection. 

All SIMD machines built  have been based on the distributed memory model.  Various SIMD machines  

differ mainly in the data routing network chosen for inter PE communications.  

Shared Memory Model 

 

 

 

The diagram shows shared memory model which shows the variation of the SIMD computer using 

shared memory between   PEs.  An alignment network is used as the inter PE memory communication  

network.  This diagram is controlled by the control unit.  The Burroughs Scientific Processor (BSP) had 

adapted this architecture , with n = 16 PEs  updating m  17 shared memory modules  through a 16 x 17 

alignment network.  The alignment network must properly set to avoid access conflicts.  Most SIMD 

computers were built with distributed memories.  Some SIMD computers  uses bit slice PEs, like DAP610 

and CM/200. 

 



SIMD instructions    SIMD computers  can execute  vector instructions for arithmetic, logic, data routing 

and masking operations over vector quantities.  In bit slice SIMD machines  the vectors are nothing but 

binary vectors.  In word-parallel SIMD machines , the vector components  are 4 or 8 byte numerical 

values. 

ALL SIMD instructions must use vector operands  of equal length n, where n is the number of PEs.  SIMD 

instructions are similar to those which is used in pipelined vector processors.  The functions used in 

SIMD are permutations, broadcasts, multicasts, rotate  and shift operations. 

HOST and I/O   All I/O activities are handled by the host computer in the SIMD organizations.  A special 

control memory is used between the host and the array control unit.  The data sets are distributed  to 

the local memories  or to the shared memory modules before starting of the program execution.  The 

host manages the mass storage and graphics display of computational results.   

 

The CM-2 Architecture 

 The CM stands for connection machine, the connection machine CM-2 produced by Thinking machines 

corporation was a fine grain MPP computer  using thousands  of bit slice PEs in parallel to achieve a peak 

processing speed of above 10 Gflops.   

Program Execution Paradigm :  All programs started execution on a front end, which is issued 

microinstructions to the back end processing array when data parallel operations were desired.  The 

sequencer  broke down these microinstructions and broadcast them to all data processors in the array.  

The data sets and results could be exchanged  between the front end and processing  array in one of 

three ways, they are broadcasting, global combining and scalar memory bus as in the following diagram 

 



 

 

 

 

 

 

 

 

 



Global combining allowed the front end  to obtain sum, largest value, logical OR etc.. of values, one from 

each processor.  The  scalar bus allowed the front end to read or to write one 32-bit value at a time from  

or to the memories attached to the data processors. 

 

The Processing Array  : The CM-2 was a back end  machine for data parallel computation.  The 

processing array contained from 4K to 64K bit slice  data processors, all of which were controlled by a 

sequence  as shown in the above diagram. 

The sequencer  decoded microinstructions from the front end and broadcast nanoinstructions to the 

processors in the array.  All processors could access their memories simultaneously.  All processors  

executed the broadcast instructions in a lockstep manner.   The processors exchanged data among 

themselves in parallel through the router , NEWS grids, or a scanning mechanism.  These network 

elements are also connected to I/O interfaces.  A mass storage subsystem  called the data vault  was 

connected through the I/O for storing up to 60 Gbytes of data. 

 

Processing Nodes:  The diagram shows the CM-2 processor chips  with memory  and floating point chips. 

 



Each data processing node contained 32 bit slice data processors, an optimal floating point accelerator , 

and interfaces for interprocessor communication.  Each data processor was implemented with a 3-input 

and 2 output bit slice ALU and associated latches and a memory interface.  This ALU  could perform bit 

serial full adder and Boolean logic operations.   The processor chips were paired in each node sharing a 

group of memory chips.  Each processor chip contained 16 processors.  The parallel instruction set, 

called Paris, included nanoinstructions for memory load and store, arithmetic and local, and control of 

the router, NEWS grid and hypercube interface, floating point, I/O ,and diagnostic operations.  

The memory data path was 22 bits per processor chip.  The 18-bit memory address allowed 218 = 256 K 

memory words shared by 32 processors. The floating point handled 32-bit operations at a time.   

Hypercube Routers:   Special  hardware was built  on each processor chip for data routing among the 

processors.  The router nodes on all data processor chips were wired  together  to form a Boolean n-

cube.  A full configuration of CM-2 had 4096 router nodes on processor chips interconnected as a 12 

dimensional hypercube.  Each router was connected to 12 other router nodes. 

 

The NEWS Grid:  Within each processor chip the 16 physical processors could be arranged as an 8 x 2 , 1 

x 16, 4 x 4, 4 x 2  x 2 , or 2 x 2 x 2 x 2  grid.  Sixty four virtual processors could be assigned  to each 

physical processor.  These 64 virtual processors could be rearranged  to form a 8 x 8 grid with in the 

chip.   The NEWS grid was based on the fact that each  processor has a north, east, west and south 

neighbor in  the various grid configurations.  Also a subset of the hypercube wires could be chosen  to 

connect the 212 nodes as a two dimensional grid of any shape, 64 x 64  being one of the possible grid 

configurations.   

Scanning and Spread Mechanisms:    Besides dynamic configuration in NEWS grids through  the 

hypercube routers, the CM-2 had been built with special hardware support for scanning or spreading  

across NEWS grids.  Scanning on NEWS grids combined  communication  and computation.  The 

operation cold simultaneously  scan in every row of a grid along a  particular  dimension  for the partial 

sum of that row , the largest or smaller value or bitwise OR,AND or exclusive OR. 

I/O and Data Vault :  The connection Machine emphasized  massive parallelism in computing as well as 

in visualization of computational results.  High speed I/O channels  were available from 2 to 16 channels 

for data and/or image I/O operations.  Peripheral  devices attached to I/O channels  included the data 

vault, CM-IOP system and VME bus. 

Applications of CM-2: 

(i) Used in Document retrieval using  relevance feedback 

(ii) Memory based reasoning in the medical diagnostic  system called QUACK for simulating  the 

diagnosis  of a disease. 

(iii) SPICE like VLSI circuit analysis and layout, fluid dynamics 

(iv) Signal/image/vision processing  and integration 



(v) Neural network 

(vi) Context free parsing 

(vii) Ray tracing graphics. 

 

 

The MasPar MP-1 Architecture 

 It is a medium grain SIMD computer, different from the CM-2.  It provide interprocessor  

communication mechanisms. 

The MasPar MP-1:   The MP-1 architecture consists of four subsystems, they are (i) the PE array, (ii) the 

array control unit (ACU),(iii)  a UNIX subsystem with standard I/O, and (iv) high speed I/O subsystem as 

in the diagram.  The MP-1 family included the configurations with 1024, 4096 and up to 16,384 

processors.  The peak performance  of the 16K processor configuration was 26,000 MIPS in 32-bit RISC 

integer operations.  The system also had a peak floating point capability  of 1.5 Gflops in single precision 

and 650 Mflops in double  precision operation. 

Array Control Unit:  The ACU was 14-MIPS scalar RISC processor using a demand paging instruction 

memory.   The ACU  fetched and decoded MP-1 instructions, computed addresses and scalar data 

values, issued control signals to the PE array, and monitored  the status of thePE array.   

The ACU was microcoded  to achieve  horizontal  control of the PE array.  Most scalar ACU instructions  

executed in one 70 ns clock.  The whole ACU was implemented on the PC board. 

An implemented functional unit, called a memory machine, was used in parallel with the ACU. The 

memory machine performed PE array load and store operations, while the ACU broadcast arithmetic, 

logic and routing instructions  to the PEs for parallel execution.  

 

 



 

 

 



The PE array:  Each processor board has 1024 PEs and associated memory arranged as 64 PE 

clusters(PEC) with 16 PEs per cluster.  The following diagram (b) shows  the inter PEC connections  on 

each processor board.  Each PEC chip was connected to eight neighbors  via the X-Net mesh and global 

multistage  crossbar router network, labeled S1,S2, S3 as in the following diagram. 

 

Each PE cluster in the following diagram (a) was composed of 16 PEs and 16 processor memories(PEMs).  

The PEs were logically arranged as a 4 x 4 array for the X-Net two dimensional mesh interconnections.  

The 16 PEs in a cluster shared an access port to the multistage  crossbar router.  Interprocessor  

communications were carried out through  three mechanisms they are , 

(I) ACU-PE array communications 

(II) X-Net nearest neighbor communications 

(III) Global crossbar router communications 

The first mechanism supported ACU instruction / data broadcasts  to all PEs  in the array simultaneously  

and performed  global reductions on parallel data to recover scalar values from the array. 

 

 



 

X-Net Mesh Interconnect :  The X-net interconnect directly connected each PE with its eight neighbors 

in the two dimensional mesh.  Each PE had four  connections at its diagonal corners, forming an X 

pattern  similar to the BLITZEN X grid network.  A tri stage node at each X  intersection permitted 

communication with any of eight neighbors  using only four wires per PE. 

The connections to the PE array  edges were  wrapped  around to form  a 2-D torus.   The torus structure  

is symmetric and facilitates several important matrix  algorithms and can use a one  dimensional ring 

with two X-Net steps. 

Multistage Crossbar Interconnect:  The network   provided the global communication between all PEs 

and formed the basis for the MP-1 I/O system.  The three router stages implemented the function of a 

1024 x 1024 crossbar switch.  The router chips were used  on each processor board.  Each PE  cluster 

shared an originating port connected to router stage Sq and a target port connected to router stage S3. 

Connections  were established from an originating PE through the stages S1,S2 and Se and then to the 

target PE.  The router supported up to 1024 simultaneous  connections with an aggregate bandwidth  of 

1.3 Gbytes/s. 

Processor Elements an Memory : The PE design had mostly data path logic and no restriction fetch or  

decode logic.  This design is included in the above diagram (b).  Both integer and floating point 

computations executed in each PE with a register based RISC architecture.  Load and store instructions 

moved data between  the PEM and the register set.   

Each PE(processing element) had forty 32-bit registers available to the programmer and eight 32-bit 

registers for system use.  The registers were bit and byte addressable.  Each PE had a 4-bit integer ALU, a 

1-bit logic unit, a 64-bit  mantissa unit, a 16-bit exponent unit and a flag unit.  The NIBBLE  bus was four 

bits wide and the BIT bus was one bit wide. The PEM could be directly or  indirectly  addressed with a 

maximum aggregated memory bandwidth  of 12 Gbytes/s. 



Most data movement with each PE occurred on the NIBBLE bus and the BIT bus.  Different functional 

units within the PE could be simultaneously active during  each microstep.   

Parallel Disk Arrays: Another feature of Masspar-I is the massive parallel I/O architecture.  The PE array 

communicated with  a parallel disk array through  the high speed I/PO subsystem,  which is using the 1.3 

Gbytes/s global router network.  The disk array provided up to 17.3 Gbytes of formatted capacity with a 

9-Mbytes/s sustained disk I/O rate.  The parallel disk array was a necessity to support data parallel 

computation and provide file system transparency and multilevel fault tolerance. 

THE CONNECTION MACHINE CM-5 

The connection machine CM-5 was the most innovative effort of Thinking Machines corporation toward 

this end.   

A Synchronized MIMD Machine :  The CM-5 is a universal architecture, which combines the advantages 

of both SIMD and MIMD machines.  Traditionally , supercomputer programmers were forced to choose 

between MIMD and SIMD  computers.  An MIMD machine  is a good at independent branching  but bad 

at synchronization  and communication.  The CM-5 was designed  with a synchronized  MIMD structure  

to support  both styles of parallel computation. 

The Building blocks: The CM-5 architecture is as shown in the following diagram.  The machine was 

designed  to contain from 32 to 16,384 processing nodes, each of which could have a 32-MHz  SPARC 

processor, 32-Mbytes of memory and a 128 Mflops  vector processing unit capable of performing 64-bit 

floating point and integer operations.    The CM-5 system used a number of control processors  , which 

were Sun Microsystems workstation computers.   The number of control processors, varying with 

different configurations, ranged from one to several tens.  Each control processor was configured  with 

memory and disk based on the needs. 

 



Input and output were provided through high bandwidth I/O interfaces to graphics devices, mass 

secondary  storage such as data vault, and high performance  networks.  Additional low-speed  I/O was 

provided by Ethernet connections to the control processors.  The largest  configuration was occupy the 

space of 30m x 30m  and designed for a peak performance of 1 Tflops. 

The Network Functons : The building blocks were  interconnected by three networks, they are data 

network, a control  network and diagnostic network.  The data network provided high performance, 

point to point data communications between the processing nodes.  The control network provided 

cooperative operations, including broadcast, synchronization, and scans. 

The diagnostic network allowed “back door” access to all system hardware to test system integrity and 

to detect and isolate errors.  The data and control networks were connected to processing nodes, 

control processors and I/O channels through network interfaces.  The CM-5 architecture  was 

considered  universal because it was optimized for data parallel processing of large and complex 

problems.  The data and control networks were  designed to have good scalability, making the machine 

size limited by the cost but not by any architectural or engineering constraint.  The networks depend on 

specific  types of processors.  The network interfaces were designed  to provide an abstract view of the 

networks.    

The system operations 

The system operated one or more user partitions.  Each partition consisted of a control processor , a 

collection of processing nodes, and dedicated portions of the data and control networks.  The following 

diagram shows the distributed control of CM-5 architecture  obtained through the dynamic use of the 

two interprocessor communication networks. 



 

 

 

Partitioning of resources was managed by a system executive.  The control processor assigned to each 

partition behaved like a partition manager.  Each user process executed on  a single partition but could 

exchange  data with processes on other partitions.  Since all partitions utilized UNIX time-sharing and 

security  features, each allowed multiple  users to access the partition. 

Access to system functions was classified as either privileged or nonprivileged. Privileged system 

functions  included access to data and control  networks.  These accesses could be executed  directly by 

user code without  system calls.  The OS kernel overhead  could be eliminated in network 

communication within a user task.   

Some control processors in the CM-5 were assigned to manage the I/O devices  and interfaces.  This 

organization allowed a process on any partition to access any I/O device, and ensured that access to one 



device does not impede access to other devices.  The system operations, is defined in the above 

diagram. These operations are divided into user oriented partitions, I/O services based on system calls, 

dynamic control of the data and control networks and system management and diagnostics. 

The two networks  could download the user code from a control processor to the processing nodes, pass 

I/O requests, transfer messages of all sorts between control processors, and transfer data between 

nodes and I/O devices.  The I/O capacity could be scaled with increasing numbers of processing nodes or 

of control partitions. 

THE CM-5 NETWORK ARCHITECTURE 

The data network was based on the fat tree was designed by Leiserson in 1985.  It is applied to the CM-5 

construction.   

FAT TREES 

A  fat tree is more like a real tree in that it becomes thicker as it requires more leaves.  Processing nodes, 

control processors, and I/O channels   are located at the leaves of a fat tree.  A binary fat tree was  the 

example. The internal nodes are switches, unlike an ordinary binary tree, the channel capacities of a fate 

tree increase as we ascend from the leaves to root. 

The hierarchical nature of fat tree can be exploited to give each user partition a dedicated sub tree.  

Which cannot be interfered with by any other partition message traffic.  The CM-5 data network was 

actually implemented with a 4-ary fat tree as shown in the following diagram . 

 

To implement the partitions , one could allocate  different subtrees  to handle different partitions.   The 

size  of the subtrees  varied with different  partition demands.  The I/O channels  were assigned  to 

another subtree, which was not devoted  to any user partition.   The I/O subtree  was accessed as shared 

system resource .  All leaf nodes  had unique physical addresses.   

The Data Network :    To route a message from one processor  node to another.  The message ws sent 

up the tree to the least  common ancestor(predecessor)   of the two processors and then down to the 

destination.   



In the 4-ary fate tree implementation in the above diagram of the data network, each connection 

provided a link  to another chip with a raw bandwidth  of 20 Mbytes/s in each direction.  By selecting  at 

each level of the tree whether two or four parent links are used,  the bandwidths between nodes in the 

fat tree could be adjusted.   

Each processor had two connections to the data network, corresponding  to a raw bandwidth of 4 

Mbytes/s in and out of each leaf node.  In the first two levels, each router chip used only two parent 

connections to the next higher level, which yields  a bandwidth of 160 Mbytes/s out a subtree with 16 

leaf nodes.  The bandwidth  continued  to scale linearly up to 16,384 nodes, the largest CM-5 

configuration  planned. 

As a message went to tree , it would have several choices as to which parent connection to take.  The 

decision was resolved by pseudo randomly selecting  from among those links that were unobstructed  

by other messages.  After reaching  the least common ancestor of the source and destination nodes, the 

message took a single available path of links down the destination.   

The data network chips were driven by a 40 MHz clock.  The first two levels  were routed through  

backplanes.  The wires on higher levels were  routed through  cables, which could be  either 9 or 26 feet 

in length.  Faulty processor  nodes or connection links could be mapped out of the system and 

quarantined.  This allowed the system to remain functional while servicing  and testing the mapped out 

portion.  The data network was acyclic  from input to output.   

The Control Network:  The architecture  of the control network was that of a complete binary tree with 

all system components at the leaves.  Each user partition was assigned to subtree of the network.  

Processing nodes were located at leaves of the subtree, and a control processor  was mapped  into the 

partition  at an additional leaf.  The control processor executed scalar part of the code, while the 

processing nodes executed the data parallel part. 

Unlike the variable length messages transmitted by the data network, control network packets that  had 

a fixed length of 65 bits.  There are three major types of operations on the control network, they are (i) 

broadcasting, (ii) Combining and (iii) Global operations.  These operations provided  interprocessor 

communications. 

The control network  provided the mechanisms allowing  data parallel code to be executed efficiently.  It 

is supported MIMD execution for general purpose applications.   The binary tree  architecture made the 

control network simpler to implement than the fat tree used in the data network. It also has  a additionl 

switching capability. 

The Diagnostic Network: This network was needed for upgrading system availability.  Built in testability 

was achieved.  This network was  organized as a binary tree for its simplicity in addressing.  One or more  

diagnostic processors were at the root.  The leaves were pods(case), and each pod was a physical 

system, such as a board or a backplane.   



The diagnostic  network allowed groups of pods to be addressed according to  a hypercube address 

scheme.  A special diagnostic interface was design to form an in system check of the integrity of all CM-5 

chips that supported the JTAG(Joint Test Action Group) standard and all networks. It provides scan 

access to all chips which support JTAG standard.  The network itself was completely  testable and 

diagnosable.   

Control Processors and Processing Nodes 

Control Processors 

The following diagram shows the basic control processor consists of a RISC microprocessor , memory 

subsystem , I/O with local disks and Ethernet connections along with  CM-5 network interface.  This was 

equivalent  to a standard off the shelf workstation class computer system.  The network interface 

connected the control processor to the rest of the system through the control network and the data 

network. 

 

 



Each control processor ran CMOST, a UNIX based OS with extensions for managing the parallel 

processing resources of the CM-5.  Some control processors managed computational resources in user 

partitions.  Others were used to manage I/O resources.  Control processors specialized in managerial 

functions rather than computational functions. 

Processing Nodes The following diagram shows the basic structure of a processing node.  It was a SPARC 

based processors with a memory subsystem consisting of a memory  controller and a 8,16 or 32 Mbytes 

of DRAM memory.  The internal bus was 64-bits wide.   The SPARC processor was chosen for its 

multiwindow feature  to facilitate  fast context switching.  This was very crucial  to the dynamic  use of 

the processing nodes in different user partitions  at different times. The network interface  connected  

the node to the rest of the system  through the control  and data networks. 

 

Vector Units :  As illustrated in the following diagram , the vector units could be added between the 

memory bank and the system bus as an optional feature.  The vector units  would replace the memory 

controller .  Each vector unit  had a dedicated 72-bit  so its attached memory bank, providing a peak 

memory bandwidth of 128 Mbytes/s per vector unit.  The vector unit executed vector instructions 

issued by the scalar processor and performed  all functions of a memory controller, including generation 

and check ECC bits.   From the following diagram (b)  each vector unit instruction decoder , a pipelined 

ALU, and  sixty four  64-bit registers like a conventional vector processor.   



 

Each vector instruction could be issued  to a specific  vector unit or pairs of units or broadcast to all four 

units at once.  The scalar processor took care of address translation and loop control, overlapping them  

with vector unit operations.   The vector units provided 512 Mbytes/s memory bandwidth  and 128 

Mflops 64-bit peak performance  per node.  The CM-5 is a supercomputer. 

Interprocessor Communications: 

There is a high speed and spreading mechanisms in CM-2.  In the CM-5  these mechanisms were 

designed  to be further upgraded into four categories of interprocessor communication : replication, 

reduction, permutation, parallel prefix.  These operations could be applied to regular  or irregular  data 

sets including vectors, linked lists, completely irregular patterns.  The role of control network is also 

identified in these operations. 

Replication: When we recall the broadcast operation, where a single value may be replicated to as many 

copies and distributed  to all processors as in the following diagram(a), other duplication operations 

include the spreading of a column vector into all the columns of the matrix as in the figure (b) , the 

expansion of a short vector into  a long vector as in diagram (c) and a completely irregular  duplication as 

in diagram (d).  The replication plays a fundamental role in matrix arithmetic and vector processing, 

particularly on a data parallel machine.  Replication is carried out through the control network in four 

kinds of broadcasting schemes, they are user broadcast, supervisor  broadcast, interrupt broadcast,  

utility broadcast.  These operations  can be used to download  code and to distribute data to implement 

better synchronization and to configure partitions through the Operating Systems. 

 

 



 

 

 

Reduction:  Vector reduction was implemented on the CM-2 by fast scanning, and on the CM-5, this 

mechanism as further generalized  as the opposite  of replication.  It is illustrated in the following 

diagram, global reduce produces  the sum of vector components as in diagram (a).  Also the row/column 

reductions produce the sums per each row or column of a matrix as in diagram (b). 

 

Variable length vectors were reduced  in chunks of a long vector in diagram ©.  The same idea was 

applied to a completely irregular as in diagram (d). In general reduction functions include  the maximum, 

the minimum, the average, the dot product, the sum , logical AND, logical OR. Fast scanning and 

combining  are necessities  in implementing these operations. 

Four types of combining operations reduction, forward scan, backward scan and router done, were 

xsupported by the control network.  Router done refers to the detection of completion of a message 

routing cycle, based on Kirchoff’s  current  law, in that the network  interfaces  keep track  of the 

number of messages  entering  andleaving  the data network. 

 



 

Permutation: Data parallel computing relies  on permutation for fast exchange  of data among 

processing  nodes.  The following diagram shows four cases of permutations performed on CM-5.  These 

permutation operations are often needed in matrix transpose , reversing vector, shifting a 

multidimensional grid, and FFT butterfly operations.  

  



Parallel Prefix: 

 This is a kind of combining operation supported by  the control network .  A parallel prefix operation 

delivers to the ith processor the result of applying  one of the  five reduction operators to the values in 

the preceding i – 1 processors , in the linear  order given by the data address.  The idea illustrated in the 

following diagram with four examples. The following diagram (a) shows the one dimensional sum prefix, 

in which for  example the fourth output 12 is the sum of the first  four input elements .  The two 

dimensional row/column sum prefix (diagram (b))  can be similarly performed using the forward 

scanning mechanism. 

 

The figure (c ) computes the one dimensional  prefix sum on sections of a long vector independently.  

The diagram (d) shows the  forward scanning along linked lists to produce the prefix  sums as outputs.   

 

 


