B.Sc. MICROBIOLOGY

					Ins.		MARKS			
SE M	COURSE CODE	PART	COURSE	COURSETITLE	Hrs /Week	CREDIT	CIA	ESE	TOTAL	
I	20U1LT1/LA1/LF1 /LH1/LU1	Ι	Language – I		6	3	25	75	100	
	20UCN1LE1	II	English - I		6	3	25	75	100	
1	20UMB1CC1		Core – I	Introduction to Microbiology and Microbial Diversity	5	5	25	75	100	
	20UMB1CC2P	III	Core – II	Introduction to Microbiology and Microbial Diversity Practical	3	2	25	75	100	
	20UMB1AC1		Allied –I	General Biochemistry-I :Biomolecules	5	4	25	75	100	
	20UMB1AC2P		Allied –II	General Biochemistry-I :Biomolecules Practical	3	2	25	75	100	
	20UCN1AE1	IV	AEC-I	Value Education	2	2	-	100	100	
			TOTAL		30	21			700	
	20U2LT2/LA2/LF2 /LH2/LU2	Ι	Language – II		6	3	25	75	100	
п	20UCN2LE2	Π	English – II		6	3	25	75	100	
	20UMB2CC3	III	Core – III	Bacteriology and Virology	6	5	25	75	100	
[20UMB2CC4P		Core – IV	Bacteriology and Virology Practical	3	2	25	75	100	
	20UMB2AC3		Allied – III	General Biochemistry-II: Bioenergetics and Enzymology	4	3	25	75	100	
	20UMB2AC4P		Allied –IV	General Biochemistry-II: Bioenergetics and Enzymology Practical	3	2	25	75	100	
	20UCN2SE1	IV	Skill EnhancementCourse - I @	Soft Skills Development	2	2	-	100	100	
					30	20		1	700	
\vdash	20U3LT3/LA3/LF3	TOTAI	L Language– III		6	3	25	75	100	
ш	/LH3/LU3	I				_				
	20UCN3LE3	II	English – III		6	3	25	75	100	
	20UMB3CC5		Core– V	Microbial Physiology and Metabolism	4	4	25	75	100	
	20UMB3CC6P	III	Core-VI	Microbial Physiology and Metabolism Practical	3	2	25	75	100	
	20UMB3AC5		Allied– V	Immunology-I:Principles of Immunology	4	3	25	75	100	
	20UMB3AC6P		Allied–VI	Immunology-I:Principles of Immunology Practical	3	2	25	75 100	100	
	20UMB3GE1 20UCN3AE2	IV	Generic Elective I # AEC-II	Environmental Science	2	2	-	100	100 100	
	200CINJAE2		TOTAL			21	-	100		
		×			30				800	
IV	20U4LT4/LA4/LF4 /LH4/LU4	I	Language–IV		6	3	25	75	100	
	20UCN4LE4	II	English– IV		6	3	25	75	100	
	20UMB4CC7		Core- VII	Clinical Microbiology	5	5	25	75	100	
	20UMB4CC8P	ш	Core - VIII	Clinical Microbiology Practical	3	2	25	75	100	
	20UMB4AC7		Allied- VII	Immunology-II: Immunohaematology	5	3	25	75	100	
	20UMB4AC8P		Allied-VIII	Immunology-II: Immunohaematology Practical	3	2	25	75	100	
	20UMB4GE2	IV	Generic Elective – II#		2	2	-	100	100	
1	20UCN4EA	V	Extension Activities	NCC, NSS, etc.	-	1	-	-	-	
			TOTAL		30	21			700	
V	20UMB5CC9		Core – IX	Microbial Genetics	6	5	25	75	100	
	20UMB5CC10		Core – X	Molecular Biology and Recombinant DNA Technology	5	5	25	75	100	
	20UMB5CC11	ш	Core – XI	Industrial Microbiology	5	5	25	75	100	
	20UMB5CC12P		Core - XII	Microbial Genetics, Molecular Biology and Recombinant DNA Technology and Industrial Microbiology Practical	5	5	25	75	100	
l t	20UMB5DE1		DSE - I **		5	4	25	75	100	
[20UMB5SE2		Skill Enhancement Course II@		2	2	-	100	100	
	20UMB5SE3	IV	Skill Enhancement Course – III@		2	2	-	100	100	
	20UMB5EC1		Extra Credit Course - I	General Intelligence for competitive Examination	-	4*		100*	100*	
		TOTAI			30	28	1		700	
	20UMB6CC13		Core-XIII	Food and Dairy Technology	5	5	25	75	100	
VI	20UMB6CC14		Core-XIV	Environmental Microbiology	5	5	25	75	100	
	20UMB6CC15		Core - XV	Soil and Agricultural Microbiology	5	5	25	75	100	
	20UMB6CC16P	III	Core - XVI	Food and Dairy Technology Environmental Microbiology,	5	5	25	75	100	
			DSE II **	Soil and Agricultural Microbiology Practical						
	20UMB6DE2				5	4	25	75	100	
	20UMB6DE3	TT '	DSE III **		4	4	25	75	100	
	20UCN6AE3	IV	AEC-III	Gender Studies	1	1	-	100	100	
\vdash	20UMB6EC2 20UMBAECA		Extra Credit Course - II Extra Credit Course for	Microbiology for competitive examinations	-	4* 1*		100*	100*	
			all	Online Course					-	
			TOTAL		30	29			700	
			GRAND TOTAL							

Not Considered for Grant Total and CGPA.

Generic Electives for other major electives

Semester	Course code	Course Title
III	20UMB3GE1	Microbial Food Products
IV	20UMB4GE2	Cosmetic Microbiology

@ Skill Enhancement Courses

Semester	Course code	Course Title
	20UMB5SE2A	Biofertizers and Biopesticides
V	20UMB5SE2B	Analytical Techniques
	20UMB5SE3A	Textile Microbiology
	20UMB5SE3B	Mycology

****Discipline Specific Electives**

Emester	Course code	Course Title
	20UMB5DE1A	Bioinformatics and Biostatistics
V	20UMB5DE1B	Medical Entomology
	20UMB6DE2A	Plant Pathology
	20UMB6DE2B	Applied Phycology
VI	20UMB6DE3A	Social and Preventive Medicine
	20UMB6DE3B	Biosafety and Intellectual property rights

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
I	20UMB1CC1	Core – I	INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY	5	5	100	25	75

At the end of the course, students will be able to

1. Explicit the historical inventions, scope of Microbiology and Principles of Microscopy.

2. Systematize the taxonomy of Microorganisms.

3. Demonstrate the bacterial growth by using various measurement techniques.

4. Illustrate the methods of sterilization, media preparation, pure culture, preservation and decontamination techniques.

5. Describe the microbial diversity and their economic importance.

UNIT I

Introduction- Definition, Scope and Landmark discoveries relevant to the field of microbiology;#Germ theory of disease#, Theory of spontaneous generation.Biogenesis.Microscopy: Introduction, Principle – Bright field, dark field, phase contrast, confocal, fluorescent and electron microscope-TEM and SEM. Specimen preparation of Electron Microscopy.

UNIT II

Taxonomy: Types of classification (artificial, natural, phylogenetic); #binomial nomenclature#. Haeckel's three kingdom, Whittaker's five kingdom and Eight kingdom (Cavalier Smith). Outline classification based on Bergey's manual of systemic Bacteriology(9th edition). Difference between the prokaryotic and eukaryotic microorganisms.

UNIT III

Growth and Measurement: Modes of cell Division, New cell formation. Growth curve, Synchronous growth and Continuous growth.Quantitative Measurement of Bacteria– Direct Microscopic Count, Electronic Enumeration ofCell Numbers, #Plate count method#, Membrane – Filter Count, Turbidometricmethods.Anaerobic culture techniques– Wright's tube, Roll tube, McIntosh Fildes jar method.

UNIT IV

Methods in Microbiology: Sterilization- Principles, Methods of Sterilization– Physical and Chemical methods. Media preparation -Solid and Liquid media – Different types of Media.Pure culture techniques - Serial dilution technique, Pour plate, Spread plate, Streak plate and #Micro manipulator#.Methods of maintenance and preservation of microbes.Safe decontamination practices.

UNIT V

Diversity of microbes: Fungi: General characteristics, classification, reproduction and its economic importance. **Algae:** General characteristics and Classification basic knowledge on its reproduction and its economic importance.**Actinomycetes:** General characteristics and their

15 hours

15 hours

15 hours

15 hours

15 hours

importance.**Protozoa**: #General characteristics#, classification, reproduction and its economic importance.

##Self-studyportion.

Text Books:

T.B-1. Michael J. Pelczar, Jr.E.C.S. Chan, Noel R.Krieg, Microbiology, 5thedition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.

T.B-2. Lansing M. Presscott, John P. Harley and Donald A. Klein's, Microbiology, 7thedition, McGrawHill, 2008.

T.B-3. Roger Y. Stainer, John L. Ingraham, Mark L, Wheelis and Page R. Painter, General Microbiology, 5thEdition, Macmillan Press Ltd, London,1992.

T.B-4. R.C. Dubey and D.K Maheswari, A Textbook of Microbiology (Revised edition), S. Chand and Company Ltd, New Delhi, 2012.

UNIT I	Chapter I, II &IV	T.B-1
UNIT II	Chapter II	T.B-4
UNIT III	Chapter VI	T.B-2
UNIT IV	Chapter II	T.B-3
UNIT V	Chapter XVII,	
	XVIII, XIX	T.B-1
	Chapter II	T.B-4

Books for Reference:

1.R.Ananthanarayan and C.K.JayaramPaniker, Textbook of Microbiology, 8thedition, Universities Press (India) Private Limited, 2009.

2. Jeffrey C. Pommerville, Alcamo's Fundamentals of Microbiology, 9th edition, Jones and Bartlett publishers, Massachusetts, 2011.

3.S.S. Purohit, Microbiology- Fundamentals and Applications, 7th Edition, Agrobios (India) Jodhpur, 2008.

Web Source:

- 1. <u>https://www.studyandscore.com/studymaterial-detail/phylum-protozoa-general-characters-and-classification</u>
- 2. <u>http://ecoursesonline.iasri.res.in/mod/page/view.php?id=5205</u>
- 3. <u>https://microbeonline.com/maintenance-and-preservation-of-pure-cultures-of-bacteria/</u>

Semester Code **Title of the Paper** Hours Credits **INTRODUCTION TO** MICROBIOLOGY AND 5 5 Ι **20UMB1CC1** MICROBIAL DIVERSITY Programme Specific Outcomes Course Programme Outcomes Outcomes (POs) (PSOs) (COs) PO1 **PO2** PO3 PSO1 PSO2 PSO3 PSO PO4 PO5 PSO 4 5 \checkmark \checkmark \checkmark \checkmark \checkmark CO1 \checkmark \checkmark CO2 √ \checkmark ✓ ✓ ✓ ✓ \checkmark √ \checkmark \checkmark \checkmark \checkmark \checkmark CO3 ✓ \checkmark \checkmark CO4 ✓ \checkmark ✓ \checkmark \checkmark CO5 ✓ \checkmark ✓ √ \checkmark Number of Matches= 34, Relationship : Moderate

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Prepared by: K.Vijayalakshmi Checked by: 1.A.Fasila Begum 2. Dr.A.KhaleelAhamed

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal Marks	External Marks
I	20UMB1CC2P	Core – II	INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY- PRACTICAL	3	2	100	20	80

At the end of the course, students will be able to

- 1. Assess the biosafety measures and aseptic techniques.
- 2.Illustrate the methods of sterilization, media preparation and pure culture techniques.
- 3. Detect the microorganisms from various samples.
- 4. Recapitulate the bacteria by counting methods.
- 5. Execute the various staining techniques.

List of Practicals

- 1. Laboratory practice and precautions. Antiseptics and disinfectants.
- 2. Cleaning and sterilization of glass wares.
- 3. Culture media preparation -Solid, semi-solid and liquid medium.
- 4. Pure culture techniques- Streak, Spread and Pour plate method.
- 5. Isolation of bacteria.
- 6. Isolation of fungi.
- 7. Isolation of actinomycetes.
- 8. Isolation of cyanobacteria.
- 9. Enumeration of bacteria by viable count and total count.
- 10. Staining of bacteria- Simple and Gram staining technique.
- 11. Staining of Fungi –Lacto phenol cotton blue method.

Practical Manual:

- 1. James G. Cappuccino, Natalie Sherman, Microbiology A laboratory manual, The Benjamin Cummings Publishing Company, Inc, 1996.
- 2. Mackie and McCartney, Practical Medical Microbiology, Churchill Livingston, 1989.
- 3. K.R. Aneja, Experiments in Microbiology Plant Pathology and Biotechnology, New Age International Limited, 2005.
- 4. B.K. Khuntia, Basic Microbiology An Illustrated Laboratory Manual, 2nd Edition, Daya Publishing House, New Delhi, 2013.

Semester		Code		Title of the Paper					C	redits
I	20UN	AB1CC	2P	INTRODUCTION TO MICROBIOLOGY AND MICROBIAL DIVERSITY PRACTICAL				3		2
G		Programme Outcomes Programme							utcome	es
Course			(PO	<u> </u>			· · ·	Os)		1
Outcomes	PO1	PO2	PO3	PO4	PO5	PSO1 PS		PSO	PSO	PSO
(COs)							2	3	4	5
CO1	✓	✓	\checkmark	✓	\checkmark	\checkmark	√	✓	√	✓
CO2		√	\checkmark	✓			\checkmark	✓	\checkmark	
CO3	~	✓		✓		\checkmark	√		√	
CO4	✓	\checkmark		✓		\checkmark	\checkmark		\checkmark	
CO5	~	√		✓ ✓ ✓						
	Number of Matches= 32, Relationship : Moderate									

Prepared by:

K.Vijayalakshmi

Checked by: 1.A.Fasila Begum 2. Dr.A.KhaleelAhamed

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External Marks
Ι	20UMB1AC1	ALLIED - I	GENERAL BIOCHEMISTRY I: BIOMOLECULES	5	4	100	25	75

At the end of the course, students will be able to

1.Describe the structure of atoms, unit concentrations and stabilizing interactions of Biomolecules.

- 2. Restate the structure, classification, function and sources of Carbohydrates.
- 3. Explain the classification, structure, properties of Aminoacids and Proteins.
- 4. Summarize the classification, structure and functions of Lipids.
- 5. Determine the classification and structure of Vitamins and Nucleic acids.

UNIT I

Biomolecules: Structure of atoms, molecules and chemical bonds. Units of measurement of solutes in solution- Normality, molalityandmolarity. Stabilizing interactions -Vander Waals, electrostatic, hydrogen bonding and hydrophobic interaction. Principles of biophysical chemistry - #pH and buffer#.

UNIT II

Carbohydrates: Biological significance, Occurrence, Structure, Classification and properties of carbohydrates and Stereoisomerism.Structure of glucose-Straight chain structure and #Ring structure#.DisaccharidesMaltose. Lactose and Sucrose. Polysaccharides-Homo and Heteropolysaccharides.

UNIT III

Amino acids and proteins: Structure, Classification, properties and types of amino acids. Proteins- Classification, Structure and #function#. Primary, Secondary, Tertiary and Quaternary structure- forces stabilizing the structure of proteins.

UNIT IV

Lipids: Structure, classification, occurrence, properties and function of lipids. Saturated and unsaturated fatty acids- Triacylglycerols, Phospholipids, Glycolipids, Steroids and #Amphipathic lipids#.-oxidation of fatty acid.

UNIT V

Vitamins and Nucleic acid: Definition, sourcesand functions of Fat soluble vitamins and Water soluble vitamins. Nucleic acid: Introduction- Nucleotides and #Nucleosides# and their importance – composition, structure and metabolism of nucleic acid.

##Self-study portion.

15 hours

15 hours

15 hours

15 hours

15 hours

Text Books:

T.B-1. David L. Nelson and Michael M.Cox, Lehniger Principles of Biochemistry, 4th Edition, W.H. Freeman and Company, New York, 2005.

T.B-2. Eric E. Conn, Paul K. Stumpf, George Bruening and Roy H. Doi, Outlines of Biochemistry, 5thEdtion, John Wiley and Sons, New Delhi, 2006.

T.B-3. Ambikashanmugam, Fundamentals of Biochemistry for Medical students 7thEdition,Kartik offset Printers, Chennai, 1998.

T.B-4.U.Satyanarayana and U.Chakrapani, Biochemistry,4th edition, Elsevier, New Delhi, 2013.

UNIT I	Chapter I	T.B-2
UNIT II	Chapter VII	T.B-1
UNIT III	Chapter III	T.B-1
UNIT IV	Chapter II	T.B-3
UNIT V	Chapter V&VII	T.B-4

Books for Reference:

- 1. Dawn, B. Markus, Biochemistry, Harwal Publishing, New York, 1994.
- 2. Donald voet and Judith voet, Biochemistry, John Wiley and Sons, New York, 1990.
- 3. Jeremy M. Berg, JoghnL.Tymoczko and LubertStryer, Biochemistry, 5th Edition, W.H. Freeman and Company, New York, 1995.

Web Source:

1.https://sciencenotes.org/concentration-units-for-solutions/

- 2. https://ww2.chemistry.gatech.edu/~lw26/structure/molecular_interactions/mol_int.html
- 3. https://www.mikeblaber.org/oldwine/BCH4053/Lecture10/Lecture10.htm

Semester		Code]	Fitle of the	e Paper		Hours	С	redits	
I	20U I	MB1A(C1 G		AL BIOC IOMOLE	HEMISTR CULES	YI:	5		4	
Course		Prog	ramme C		s	Prog		Specific O	utcome	s	
Outcomes			(POs)	s) (PSOs)							
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO	PSO	
							4	5			
CO1	✓		~	~		\checkmark		~	✓		
CO2	~	✓	√			√	~	~			
CO3	~	✓	√			√	✓	~			
CO4	~	~	✓		✓	√	~	~		~	
CO5	~	✓	√	 ✓ 		\checkmark	~	~	~		
	-	Numb	er of Ma	tches=	34, Relat	ionship :	Modera	ate		•	

Prepared by: A.Fasila Begum Checked by: 1.K.Vijayalakshmi 2. Dr.A.KhaleelAhamed

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal Marks	External marks
I	20UMB1AC2P	ALLIED – II	GENERAL BIOCHEMISTRY I: BIOMOLECULES - PRACTICAL	3	2	100	20	80

At the end of the course, students will be able to

- 1. Prepare different Buffers.
- 2. Perform qualitative analysis of sugars and Amino acids.
- 3. Demonstrate theamino acid and ascorbic acid quantitatively.
- 4. Predict the amount of proteins and Lipids.
- 5. Create an entrepreneurship in biomolecules extraction.

List of Practicals

- 1. Preparation of normal, molar and percentage solutions.
- 2. Preparation of Buffers.
- 3. Qualitative Analysis of sugars.
- 4. Qualitative Analysis of Amino acids.
- 5. Estimation of glucose.
- 6. Estimation of amino acid
- 7. Estimation of ascorbic acid from biological sample burette method.
- 8. Estimation of Protein by Lowry's method.
- 9. Estimation of Lipid.
- 10. Extraction of Biomolecules:i) Starch from potato ii)Casein from milk.

Practical Manual:

1. Keith Wilson and John Walker, Principles & Techniques of Practical Biochemistry,4th

Edition, Cambridge University press, Britain, 1995.

2. B.A. Strolv and V.C. Makavora, Laboratory manual in Biochemistry, MIR Publisher, Moscow, 1989.

Semester		Code		•	Title of the	Paper		Hours	C	redits		
Ι	20UN	IB1AC	212			EMISTRY I: PRACTICAL		3		2		
Course		Prog	gramme (Outcom	es	Program	nme Spe	ecific O	c Outcomes			
Outcomes			(POs	Os) (PSOs)								
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO PSO PSO 1					
				2					4	5		
CO1	✓			✓		~			√			
CO2	✓	✓	\checkmark	✓	\checkmark	\checkmark	✓	✓	√	✓		
CO3	\checkmark		✓	✓	\checkmark	\checkmark		✓	\checkmark	√		
CO4	✓		✓	✓	\checkmark	\checkmark		✓	√	✓		
CO5	\checkmark		√									
		Nu	umber of	Matche	s= 38, Rela	tionship : H	ligh			•		

Prepared by:

A.Fasila Begum

Checked by: 1.K.Vijayalakshmi

2. Dr.A.KhaleelAhamed

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
п	20UMB2CC3	CORE -III	BACTERIOLOGY AND VIROLOGY	6	5	100	25	75

At the end of the course, students will be able to

1. Investigate the Ultra structure of Bacteria.

2. Comment thevarious bacteria and interpret staining techniques.

3. Grasp the knowledge on cultivation and economic importance of bacteria.

4. Describe the general characteristics of viruses.

5.Explain the plant and animal viruses.

UNIT I

Structural organization of bacteria: Size, Shape and Arrangement of Bacterial cells. Ultra structure of a bacterial cell - cell wall, cell membrane, ribosomes, capsule, flagella, spores, cysts, plasmid, mesosomes and cytoplasmic inclusions, Mitochondria, Golgi bodies, lysosomes, endoplasmic reticulum, #peroxisomes#, chloroplast, structure and function of cytoskeleton and its role in motility.

UNIT II

Biology of bacteria: *Staphylococcus, Streptococcus, E.coli, Klebsiella, Bacillus, Proteus, Salmonella, Vibrio, Pseudomonas, Mycobacterium, Spirochetes, Mycoplasma, Rickettsiae and Chlamydiae,* Archaebacteria.Staining:Principles and Types of staining–Simple, Differential, Capsule staining,#NuclearandFlagellastaining#.

UNIT III

Cultivation and Importance of Bacteria- Nutritional requirements, Nutritional Types of bacteria- Phototrophs, Chemotrophs, Autotrophs, Heterotrophs and #Obligate parasites#.Economic importance of bacteria in Agriculture-Nitrogen fixing organisms;Ecological importance-bioremediation and biopesticides; Industrial importance- antibiotics and vaccines.

UNIT IV

Virology:HistoryGeneral properties of viruses.Classification (Baltimore system) and nomenclature of viruses.Structure and replication of virus- Plant, animal and bacterial viruses-Lytic life cycle- T-Even coliphages and Lysogenic life cycle-#Lambda phage#.Isolation, purification, assay and cultivation of viruses.Conceptofvirions,viroids, virusoids, and Prions.

UNITV

Plant and Animal viruses:General characteristics and multiplication of Plant Viruses-#Tobacco mosaic virus#, Potato leaf roll virus, Bunchy top of banana. Animal viruses- Adenoviruses, Herpes viruses, Poxviruses, Rhabdo viruses and Retrovirus.

18 hours

18 hours

18 hours

18 hours

18 hours

Text Books:

T.B-1. Michael J. Pelczar, Jr. E.C.S. Chan, Noel R.Krieg, Microbiology, 5thedition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.

T.B-2. Lansing M. Presscott, John P. Harley and Donald A. Klein's, Microbiology, 7thedition, McGrawHill, 2008.

T.B-3.R.Ananthanarayan and C.K.Jayaram Paniker, Textbook of Microbiology, 8thedition, Universities Press (India) Private Limited, 2009.

T.B-4.K.C.Sawant, Virology, Dominant Publishers and Distributors, New Delhi, 2015.

UNIT I	ChapterV	T.B-1
UNIT II	Chapter III	T.B-3
UNIT III	Chapter XLIV	T.B-2
UNIT IV	Chapter I& II	T.B-4
UNIT V	Chapter XVII	T.B-3

Books for Reference:

1. Jeffrey C.Pommerville, Alcamo's Fundamentals of Microbiology, 9th edition, Jones and Bartlett publishers, Massachusetts, 2011.

2.N.J. DimmockandS.B.Primrose, Introduction to Modern Virology,4th Edition, Blackwell Scientific Publications, Oxford, 1994.

3. A.Maharajan, Virology, Daya Publishing House, New Delhi 2015.

4.S.S. Purohit, Microbiology- Fundamentals and Applications, 7th Edition, Agrobios (India) Jodhpur, 2008.

Web Source:

1. https://en.wikibooks.org/wiki/Structural_Biochemistry/Cell_Organelles/Cytoskeleton

2.<u>https://ucmp.berkeley.edu/archaea/archaea.html</u>

3.https://www.britannica.com/science/virion

4.https://www.khanacademy.org/science/biology/biology-of-viruses/virus-

biology/a/bacteriophages

Semester		Code		,	Title of the l	Paper		Hours	C	redits	
II	20U I	MB2CC	23	BACTERIOLOGY AND VIROLOGY						5	
Course		Prog	gramme (Dutcome	es	Program	nme Sp	ecific O	utcome	S	
Outcomes		(POs) (PSOs)									
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO	PSO	PSO	PSO	
							2	3	4	5	
CO1	✓	~		~		\checkmark	✓		√		
CO2	✓	✓	\checkmark	✓		\checkmark	√	✓	√		
CO3	✓	✓	\checkmark	✓		\checkmark	√	✓	√		
CO4	~	~	~	~	~	~	~	~	~	~	
CO5	~	✓	~	~		\checkmark	~	~	√		
	•	Nu	mber of	Matches	s= 40, Rela	tionship : H	ligh	1	1	·	

Prepared by: K.Vijayalakshmi Checked by: 1.A.Fasila Begum 2. Dr.A.KhaleelAhamed

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
п	20UMB2CC4P	CORE -IV	BACTERIOLOGY AND VIROLOGY- PRACTICAL	3	2	100	20	80

At the end of the course, students will be able to

- 1. Examine the motility of bacteria.
- 2. Perform different staining techniques.
- 3. Determination of bacterial growth by different methods.
- 4. Demonstrate the isolation of bacteriophages.
- 5. Justify the amount of bacteriophages in sewage.

List of Practicals

- 1. Temporary wet mount (TWM) technique by hay infusion broth.
- 2. Motility of bacteria Hanging drop technique.
- 3. Acid Fast Staining.
- 4. Bacterial spore (endospore) staining.
- 5. Capsule staining
- 6. Negative staining technique.
- 7. Determination of bacterial growth by direct count and
- 8. Determination of bacterial growth by turbidity measurements (Spectrophotometric method).
- 9. Isolation of Bacteriophage from sewage.
- 10. Cultivation and Enumeration of Bacteriophages.

Practical Manual:

- 1. James G. Cappuccino, Natalie Sherman, Microbiology A laboratory manual, The Benjamin Cummings Publishing Company, Inc, 1996.
- 2. K.R. Aneja, Experiments in Microbiology Plant Pathology and Biotechnology, New Age International Limited, 2005.
- 3. B.K.Khuntia, Basic Microbiology An Illustrated Laboratory Manual, 2nd Edition, Daya Publishing House, New Delhi, 2013.

Semester		Code		Title of the Paper H					С	redits
II	20UN	1B2CC	4P		CTERIOLO DLOGYPR			3		2
Course		Prog	gramme (es	Program	-		utcome	es
Outcomes			(POs	5)			(PS	Os)		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO	PSO	PSO	PSO
							2	3	4	5
CO1	~	<	\checkmark	~	\checkmark	√	✓	~	~	~
CO2	✓	√	✓	✓		✓	✓	✓	√	
CO3	✓	✓	✓	✓		✓	✓	✓	√	
CO4	✓	√		✓		✓	✓		\checkmark	
CO5	✓	✓		✓		✓	✓		√	
		Nu	mber of]	Matches	s= 38, Rela	tionship : H	High			

Prepared by: K.Vijayalakshmi Checked by: 1.A.Fasila Begum 2.Dr.A.KhaleelAhamed

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
п	20UMB2AC3	ALLIED - III	GENERAL BIOCHEMISTRY II: BIOENERGETICS AND ENZYMOLOGY	4	3	100	25	75

At the end of the course, students will be able to

- 1. Explicit the concepts of bioenergetics.
- 2. Acquire the knowledge on energy conversions.
- 3. Describe the enzymes and its source.
- 4. State the mechanisms of enzyme action.
- 5. Interpret the enzyme kinetics.

UNITI

Bioenergetics:Laws of Thermodynamics. Definitions of Gibb's Free Energy, enthalpy, entropy and relationship among them. Standard free energy change and Energy rich compounds: Phosphoenolpyruvate, 1,3- Bisphosphoglycerate, #Thioesters#.

UNIT II

Energy Conversions - Mitochondria:Chemical activity of mitochondria. Sequence of electron carriers and sites of oxidative phosphorylation, ATP generation. Theories ofoxidative phosphorylation, #uncouplers# and inhibitors of energy transfer.

UNIT III

Enzymes: Classification of enzymes - Enzymes as biocatalysts, catalytic power, activation energy, substrate specificity and active site. Sources of enzymes – Media for enzyme production-Preparation of enzymes – Centrifugation, filtration, #Cell breakage# and Chromatography

UNIT IV

Mechanism of Enzymes Action: Theories of mechanisms of enzyme action -Enzyme specificity – Active site – Study of Mechanism of enzyme reaction – Pathway of enzyme catalyzed reactions. Mechanism of action of lysozyme, #chymotrypsin# and ribonuclease.

UNIT V

Enzyme kinetics: Importance of enzyme kinetics, factors affecting rates of enzyme mediated reactions -pH, temperature, substrate concentration, #enzyme concentration and reaction time#. Derivation of Michaelis - Menton equation and its significance in enzyme kinetic studies. # **# Self-study portion.**

12hours

12hours

12hours

12hours

12hours

Text Books:

T.B-1. David L. Nelson and Michael M.Cox, Lehniger Principles of Biochemistry, 4thEdtion, W.H. Freeman and Company, New York, 2005.

T.B-2.U.Satyanarayana and U.Chakrapani, Biochemistry,4th edition, Elsevier, New Delhi, 2013.

T.B-3. Keith Wilson and John Walker, Principles and techniques of Biochemistry and Molecular Biology,6th Edition, Cambridge University Press, New York, 2005.

T.B-4. AmitaSaxena, Textbook of Biochemistry, Discovery Publishing House, 2006.

UNIT I	Chapter XIII	T.B-1 .
UNIT II	Chapter XIX	T.B-1 .
UNIT III	Chapter XV	T.B-3 .
UNIT IV	Chapter VII	T.B-4 .
UNIT V	Chapter VI	T.B-2 .

Books for Reference:

- 1. Athel Cornish Bowden. Principles of Enzyme Kinetics. Portland press, 2004.
- 2. M.F. Chaplin and C. Bucke. Enzyme Technology, Cambridge University press, 1990.

Web Source:

- 1. <u>https://www.khanacademy.org/science/chemistry/thermodynamics-chemistry/gibbs-free-energy/a/gibbs-free-energy-and-spontaneity</u>
- 2. https://www.britannica.com/science/metabolism/ATP-synthesis-in-mitochondria
- 3. http://www1.lsbu.ac.uk/water/enztech/mechan.html
- 4. https://en.wikipedia.org/wiki/Lysozyme

Semester	(Code		r	Fitle of the	Paper		Hours	C	redits
II	20 UI	MB2A(BIO	AL BIOCH ENERGEI ENZYMOI	[:	4		3	
Course		Prog		Outcom	es	-	ecific O	utcome	es	
Outcome			(PC	s)			(PS	SOs)		
S	PO1	PO2	PO3	PO4	PO5	PSO1	PSO	PSO	PSO	PSO
(COs)							2	3	4	5
CO1	~	✓	\checkmark	✓		✓	~	✓	√	
CO2	~		\checkmark	✓		✓		✓	√	
CO3	~	~	√	~	\checkmark	✓	~	~	√	~
CO4	\checkmark	✓	\checkmark			✓	√	✓		
CO5	\checkmark	✓	\checkmark	$\checkmark \qquad \checkmark \qquad$						
		Nu	mber of	f Matche	s= 38, Rel	ationship :	High	•		•

Prepared by: A.Fasila Begum Checked by: 1.K.Vijayalakshmi 2. Dr.A.KhaleelAhamed

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External Marks
п	20UMB2AC4P	ALLIED – IV	GENERAL BIOCHEMISTRY II: BIOENERGETICS AND ENZYMOLOGY - PRACTICAL	3	2	100	20	80

At the end of the course, students will be able to

- 1. Estimate the protein by different methods.
- 2.Separate the amino acids by using chromatography.
- 3.Determine the various influencing factors on enzymes
- 4. Demonstrate the method of immobilization of enzymes.
- 5. Perform the rate of anaerobic respiration.

List of Practicals

- 1. Estimation of Proteins Biuret and Folin method.
- 2. Separation of amino acids by paper chromatography.
- 3. Assay of enzyme activity.
- 4. Effect of pH on enzyme activity.
- 5. Effect of temperature on enzyme activity.
- 6. Effect of substrate enzyme activity.
- 7. Immobilization of enzymes by alginate beads.
- 8. Determine the of sugar concentration rate of anaerobic respiration

Practical Manual:

1.James G. Cappuccino, Natalie Sherman. Microbiology – A laboratory manual, The Benjamin Cummings Publishing Company, Inc, 1996.

2. K.R. Aneja, Experiments in Microbiology Plant Pathology and Biotechnology, New Age International Limited, 2005.

3. JyotiSaxena, MamtaBaunthiyal,Indu Ravi, Comprehensive Laboratory Manual of Life Sciences, Scientific Publishers, 2019.

Semester		Code		r	Fitle of the	Paper		Hours	C	redits	
II	20UN	1B2AC	4P	BIO	ENERGET	EMISTRY II ICS AND PRACTICAL	:	3		2	
Course		Prog	gramme		es	Program	nme Spo	ecific O	utcom	es	
Outcomes			(PO	(POs) (A				SOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO	PSO	PSO	PSO	
							2	3	4	5	
CO1	~		\checkmark	~		~		~			
CO2	~		✓	~	\checkmark	\checkmark		~	\checkmark	✓	
CO3	~		~	~		\checkmark		~	√		
CO4	~	~	\checkmark	~							
CO5	~	✓	√	~							
		Nu	umber of	Matche	s= 36, Rela	ationship : I	High			•	

Prepared by: A.Fasila Begum Checked by: 1.K.Vijayalakshmi 2. Dr.A.KhaleelAhamed

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal Marks	External marks
ш	20UMB3CC5	Core – V	MICROBIAL PHYSIOLOGY AND METABOLISM	4	4	100	25	75

At the end of this course, students will be able to

- 1. Examine the effects and types of nutritional transport onbacteria.
- 2. Acquire the knowledge on bacterial growth anthe influence of various factors on the growth.
- 3. Explain the energy metabolism and prominent features of bacteria.
- 4. Summarize the protein metabolism inbacteria.
- 5. Acquire the relevant knowledge about nitrogenfixation.

UNITI

Transport of nutrients and biosynthesis: Bacterial motility, Diffusion - Passive and facilitated, Primary active and secondary active transport, Group translocationphosphotransferase system, symport, antiport and uniport, electrogenic and #electro neutral transport#, Structure and Biosynthesis of a cell-wall Peptidoglycan.

UNITII

Microbial growth: Definitions of growth and generation time, measurement of microbial growth and specific growth rate. Batch and continuous culture. Factors influencing microbial growth – #temperature#, pH, pressure, salt concentration.

UNITIII

Metabolism of carbohydrates: Anabolism, catabolism, primary and secondary metabolism, Synthesis of carbohydrates - Sugar degradation pathways i.e., EMP, ED and Pentose phosphate pathway, Kreb's cycle (TCA) - Electron transport system and ATP production. Photosynthesis -#light and dark reactions#

UNITIV

Metabolism of protein: metabolic pathways of nitrogen utilization, Biosynthesis of amino acids, peptides and proteins. #Degradation of amino acids#.

UNITV

Anaerobic respiration and Nitrogen fixation: Nitrate, sulphate& Methane respiration -Fermentations- alcohol, mixed acid, lactic acid fermentation - Anabolic and catabolic processes of lipids. Nitrogen Fixation – Physiology of nitrogen cycle. #Nitrogen fixers'#. ##Self-studyportion.

Text Books:

T.B-1J.Moat A.G., Foster J.W. and Spector M.P. 2002. Microbial Physiology, 4th edition. A Johan Wiley and sonsinc., publication.

T.B-2 Kim B.H. and Gadd G.M. 2008. Bacterial physiology and metabolism. Cambridge University Press, Cambridge.

T.B-3 Michael J. Pelczar, Jr. E.C.S. Chan, Noel R.Krieg. Microbiology.5th edition, Tata McGraw Hill Edition, 2010.

T.B-4 Presscott, L.M J.P. Harley and C.A. Klein's.Microbiology 10th edition McGrawHill, 2017.

12 Hours

12 Hours

12 Hours

12 Hours

12 Hours

UNIT I	Chapter I	T.B-1
UNIT II	Chapter III & V	T.B-2
	Chapter V	T.B-3
UNIT III	Chapter XXIII	T.B-4
UNIT IV	Chapter XVII	T.B-1
UNIT V	Chapter XVIII	T.B-1

Books for Reference:

- 1. JM. Willey, L.M. Sherwood and C.J. Woolverton, Prescott's Principles of Microbiology. McGraw-Hill Higher Education p.969, 2009.
- 2. Caldwell, D. R., Microbial Physiology and Metabolism. Star Publishing Company. Belmont, CA, 2000.
- 3. B. H. Kim and G. M. Gadd. Bacterial physiology and Metabolism Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK, 2008.

Web Source:

- 1. <u>https://www.sciencedirect.com/topics/agricultural-and-biological- sciences/microbial-physiology</u>
- 2. <a>https://courses.lumenlearning.com/microbiology/chapter/introduction-to-microbial- metabolism/

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code			Title of	the Paper		Ho	urs	Credits
ш	20	OUMB3	CC5	MICRO	-	IYSIOLO BOLISM	GY AND	4		4
Course Outcomes (COs)		Prog	ogramme Outcomes (POs) Programme Specific Outcomes (PSOs)							es
(COS)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO5			
CO1	~		\checkmark		√	√		\checkmark		✓
CO2	√	\checkmark			√	\checkmark	✓			✓
CO3	~		\checkmark	√	~	√		\checkmark	~	~
CO4	~		\checkmark	✓	✓	✓		\checkmark	~	✓
CO5	~		\checkmark	\checkmark	~					
		Nu	mber of N	Matches=	36,Relati	onship :	Mode	rate		·

Preparedby: Dr.P.Sivalingam Checked by: 1.K.Vijayalakshmi 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal Marks	External marks
ш	20UMB3CC6P	Core – VI	MICROBIAL PHYSIOLOGY AND METABOLISM- PRACTICAL	3	2	100	20	80

At the end of this course, students will be able to

- 1. Examine the effect of abiotic factors on the growth of microorganisms.
- 2. Acquire the knowledge about microorganism and itsphysiology.
- 3. Compare the factors affecting bacterialgrowth.
- 4. Report the reproducible data from biochemicalexperiments.
- 5. Examine the photosynthetic bacteria.
- 1. Bacterial growth curve: Cell count, Viable count and absorbancemethod
- 2. Effect of temperature on bacterial growth.
- 3. Effect of pH on bacterial growth.
- 4. Isolation of Photosyntheticbacteria
- 5. Indole productiontest.
- 6. Methyl redtest.
- 7. VogesProskauertest.
- 8. Citrate utilizationtest.
- 9. Catalasetest.
- 10. Oxidasetest.
- 11. TSItest.

Practical Manuals

- Cappuccino and James, G. Microbiology a laboratory manual. Addison Wesley Publishing Company Inc., England, California. 2013.
- 2. Aneja, KR. Experiments in Microbiology, Plant pathology and Biochemistry (4th Edition). New age International publishers, India2003.

Semester		Code			Title of	the Paper		Ho	urs	Credits	
ш	20	UMB3C	CC6P		MICROBIAL PHYSIOLOGY AND METABOLISM PRACTICAL					2	
Course Outcomes	utcomes (POs) (I							e Specific (PSOs)	Specific Outcomes (PSOs)		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	~		\checkmark	~	√	~		\checkmark	✓	✓	
CO2	√	√		✓	✓	✓	✓		✓	✓	
CO3			√	~				√	✓		
CO4	~		\checkmark		\checkmark	✓		\checkmark		✓	
CO5									 ✓ 		
	Number of Matches= 34, Relationship : Moderate										

Preparedby:

1. Dr.P.Sivalingam

Checked by: 1.K.Vijayalakshmi 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal Marks	External marks
III	20UMB3AC5	Allied– V	IMMUNOLOGY-I: PRINCIPLES OF IMMUNOLOGY	4	3	100	25	75

At the end of this course, students will be able to

- 1. Describe the immune system and organs of human.
- 2. Acquire the knowledge on different types of the immune response againstpathogens.
- 3. Describe the transplantation and its immunological significance.
- 4. Acquire the knowledge of different types of vaccines and tumourbiology.
- 5. Explain the various immnotechniques applicable indiagnostics.

UNITI

Immune cells and organs of the immune system - Historical Perspective, Immune Cells -Stem cell, T cell, B cell, NK cell, Macrophage, Neutrophil, Eosinophil, Basophil, Mast cell, Dendritic cell. Organs of Immune system- #primary#and secondary lymphoid organs.

UNITII

Immune Response- Types of immunity-Innate (non-specific) and Adaptive Immunity (specific). #Antibody (humoral) mediated immunity#and Cell mediated immunity. Antigens-Properties of antigen, Immunoglobulins- Structure and types of antibody.

UNITIII

Transplantation: Structure, function of Major histocompatibility complex and HLA system. Transplantation- organ transplantations in humans, #HLA typing methods#, Graft rejection-Graft disease (GVHD).

UNITIV

Immunoprophylaxis and Tumor Immunity – Vaccine-Types – Killed, Live attenuated (bacterial and viral) and Toxoid with an example each. Types of tumors, #tumor Antigens#, causes and therapy for cancers.

UNITV

12 Hours

Immunological Techniques: Principles of Precipitation, Agglutination, Immunodiffusion, Immunoelectrophoresis, ELISA, ELISPOT, Western blotting, Immunofluoresence, Flow cytometry, #Immunoelectron microscopy#. ## Self-study portion.

Text Books:

T.B-1 Goldsby RA, Kindt TJ, Osborne BA. Kuby's Immunology. 8th edition W.H. Freeman and Company, New York, 2019.

T.B-2 Ananthanarayan R and Paniker CKJ. Textbook of Microbiology. 9th edition (edited by Paniker CKJ). University Press Publication, 2013.

T.B-3 David male, Jonathan Brostoff, Roth, D.B. and Ivan Roitt.Immunology(8th edition) MosyElsevier publication, Canada. 2012.

T.B-4 Benjamin, E., Coico, R. and Sunshine, G. Immunology (7th edition). Wiley Publication, USA. 2015.

T.B-5 Donal, M. Weir, John Steward. Immunology (8th edition). ELBS, London, 2001.

12 Hours

12 Hours

12 Hours

12 Hours

UNIT I	Chapter III	T.B-2
UNIT II	ChapterV	T.B-3
UNIT III	Chapter XXIV, XXV	T.B-1
UNIT IV	Chapter XIX	T.B-4
UNIT V	Chapter VIII	T.B-5

Books for Reference:

- 1. Ivan M. Roit . Essential Immunology Thirteenth Edition. Blackwell Scientific Publications, Oxford, 2017.
- 2. Kuby J. Immunology (7th edition) WH Freeman and Company, New York, 2013.
- 3. Richard M. Hyde. Microbiology and Immunology. National Medical series, Williams and Wilkins, Harward Publishing company,2011.
- 4. David male, Jonathan Brostoff, Roth, D.B. and Ivan Roitt.Immunology(7th edition) Mosy Elsevierpublication,Canada.2006.
- 5. Austin J. M. and Wood K. J. Principles of Molecular and Cellular Immunology, Oxford University Press, London, 2000.

Web Source:

1. https://www.sciencedirect.com/topics/medicine-and-dentistry/transplantation

2.<u>https://vk.ovg.ox.ac.uk/vk/types-of-vaccine</u>

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code			Title of	the Paper		Но	urs	Credits
III	20	UMB3	AC5	IMMUN	IMMUNOLOGY-I: PRINCIPLES OF IMMUNOLOGY				ŀ	3
Course Outcomes		Prog	ramme O (POs)			P	Programme	e Specific (PSOs)	Outcom	es
(COs)	PO1	PO2	PO3	3 PO4 PO5 PSO1 PSO2					PSO4	PSO5
CO1	~	~	\checkmark	~	√	~	✓	\checkmark	✓	~
CO2	~		\checkmark	✓	✓	✓		\checkmark	✓	✓
CO3	~	✓				~	✓			
CO4			√	✓	✓			\checkmark	✓	✓
CO5	~			✓	~	~		✓	~	
	11	Nu	mber of M	Matches=	34,Relati	onship :	Moder	rate	1	1
Preparedby	Preparedby: Checked by:									

Preparedby:

1. Dr.P.Sivalingam

Checked by:

1. A.FasilaBegum 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal Marks	External marks
ш	20UMB3AC6P	Allied–VI	IMMUNOLOGY- I: PRINCIPLES OF IMMUNOLOGY - PRACTICAL	3	2	100	20	80

At the end of this course, students will be able to

- 1. Identify the human bloodgroup.
- 2. Examine the antibodies against the target pathogen.
- 3. Analyze theimmunodiffusion.
- 4. Demonstrate theimmunoelectrophoresis.
- 5. Determine the antigen and antibody interactions.
- 1. Identification of human blood group and Rhfactor
- 2. Latex agglutination-CRPTest.
- 3. Anti Streptolysin O (ASO)test.
- 4. WIDALTest.
- 5. VDRL Test.
- 6. Radial Immuno Diffusion,
- 7. Ouchterlony Double Diffusion.
- 8. Demonstrations of Immunoelectrophoresis.
- 9. Demonstration of ELISA (Antigen/Antibodydetection)

Practical Manual

1. Barbara Detrick, Robert G. Hamilton, John L. Schmitz. Manual of Molecular and Clinical Laboratory Immunology, 8th Edition, 2016.

Semester		Code			Title of	the Paper		Ho	urs	Credits	
ш	20	UMB3A	C6P		IMMUNOLOGY-I: PRINCIPLES OF IMMUNOLOGY PRACTICAL					2	
Course Outcomes		Prog	ramme O (POs)		tcomes Programme Specific Outcomes (PSOs)						
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	~		\checkmark	~	~	\checkmark		\checkmark	✓	✓	
CO2	✓	√		✓	✓	✓	✓		✓	✓	
CO3			√	~	✓			√	✓	~	
CO4	~		\checkmark		~	✓		 ✓ 			
CO5	~		\checkmark	✓	✓	~					
	•	Nu	mber of N	Matches=	35,Relati	onship :	Mode	rate	•	•	

Preparedby: 1. Dr.P.Sivalingam

Checked by: 1. A.FasilaBegum 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
IV	20UMB4CC7	Core – VII	CLINICAL MICROBIOLOGY	5	5	100	25	75

At the end of this course, students will be able to

- 1. Identify the Eepidemiology and pathogenicity of diseases.
- 2. Summarize the characteristics and pathogenicity of various types of bacteria.
- 3. Describe the characteristics and mechanism of pathogenesis of differentfungi.
- 4. Illustrate the morphology, pathogenesis and clinical manifestations of viruses.
- 5. Determine the structure, life cycle, clinical manifestations and diagnosis of parasites.

UNIT I

Introduction to Clinical Microbiology: Scope and applications. Disease prevalence and incidence. Epidemiology and Infection - stages and transmission. Normal microflora of human body. Host defense against microbial invasion and Harmful microbial interactions. #Nosocomial infections#.

UNIT II

Bacterial pathogens: Morphology, cultural characteristics, pathogenesis, diagnosis and prophylaxis of Staphylococcus, Streptococcus, Vibrio, Bacillus, Mycobacterium, Corynebacterium, #Salmonella#, Proteus, E.coli, Klebsiella, Neisseria and Mycoplasma.

UNIT III

Fungal pathogens: General characteristics, morphology, pathogenesis, laboratory diagnosis prophylaxis Superficial- Dermatophytes-*Microsporum*, Trichophyton and of and #Epidermophyton#.Subcutaneous-Sporothrix andMycetoma.Systemic-HistoplasmaandBlastomyces.Opportunistic fungal infections-Candida, Cryptococcus and Aspergillus.

UNIT IV

Viral disease: Characteristics, morphology, pathogenesis, clinical manifestations, diagnosis and prophylaxis of Measles, Mumps, Herpes virus, Pox virus, #Polio virus#, Rabies, Corona, Chikungunya, Ebola, Dengue Hepatitis B and HIV.

UNIT V

Parasitic infections: General characteristics, structure, life cycle, pathogenesis. epidemiology, clinical manifestations and laboratory diagnosis of Amoebiasis, #Giardiasis#, Trypanosomiasis, Leishmaniasis, Malaria, Ascariasis and Filariasis.

Self-study portion.

Text Books:

T.B-1. David Greenwood, Richard Slack, Mike Barer and Will Irving, Medical Microbiology A guide to microbial infections: Pathogenesis, immunity, laboratory investigation and control, 18th edition, Church Hill Living stone Elsevier, 2012.

T.B-2. Anathanarayanan and Paniker, Text book of Microbiology, 8th edition, Orient Blackswan Publication, 2013.

T.B-3. Jawetz E. Melnic, JL and Adelberg EA. A review of Medical Microbiology.Lange Medical Publications, USA, 2007.

15 hours

15 hours

15 hours

15 hours

15 hours

UNIT I	Chapter VI	T.B-1
UNIT II	Chapter III	T.B-1
UNIT III	Chapter V	T.B-1
UNIT IV	Chapter IV	T.B-2
UNIT V	Chapter IV	T.B-3

Books for Reference:

- 1. Michael J. Pelczar, Jr. E.C.S. Chan, Noel R.Krieg, Microbiology, 5thedition, Tata Mc Graw-Hill Publishing Company Limited, New Delhi,2010.
- 2. Mark Gladwin, William Trattler, and Scott Mahan, C., Clinical Microbiology made ridiculously simple, 6th edition, Med Master, Inc., USA,2014.

Web Source:

- 1. <u>https://www.msdmanuals.com/professional/infectious-diseases/biology-of-infectious-disease/factors-facilitating-microbial-invasion</u>
- 2. https://www.slideshare.net/doctorrao/mycoplasma
- 3. https://www.ncbi.nlm.nih.gov/books/NBK7782/

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code			Title of th	e Paper		Hour	s	Credits	
IV	200	J MB4C	C7	CLI	NICAL M	ICROBIC	OLOGY	5		5	
Course Outcomes (COs)		Progr	amme C (POs	Outcomes		Pı	rogramme	Specific (PSOs)	Outcome	es	
(COS)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO 5	
CO1	\checkmark		✓	\checkmark	~	✓		~	√	~	
CO2		✓	√	\checkmark			✓	✓	✓		
CO3		~	✓	√			~	~	✓		
CO4		✓	✓	\checkmark			✓ ✓ ✓				
CO5		~	~	\checkmark	~						
		Nun	nber of N	Aatches= 3	32,Relatio	nship :	Modera	ate	1		

Preparedby:

A.FasilaBegum

Checked by: 1.K.Vijayalakshimi 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
IV	20UMB4CC8P	Core – VIII	CLINICAL MICROBIOLOGY - PRACTICAL	3	2	100	20	80

At the end of this course, students will be able to

- 1. Describe the epidemiology of diseases.
- 2. Illustrate the methods for isolation and identification of microorganisms from various specimens.
- 3. Predict the susceptibility of microorganisms to drugs.
- 4. Identify the minimum inhibitory and bactericidal concentration of antibiotics.
- 5. Demonstrate the methods for examination of fungi, yeast and protozoa from different specimens.
- 1. Isolation of bacterial flora of skin by swab method.
- 2. Isolation and identification of microorganisms from sputum sample.
- 3. Isolation and identification of microorganisms from wound sample.
- 4. Antimicrobial susceptibility test against specific pathogens Kirby-Bauer method.
- 5. Examination of medically important fungi by Lacto phenol cotton blue stain.
- 6. Demonstration of blood parasites by Giemsa staining.
- 7. Estimation of serum sugar.
- 8. Estimation of serum cholestrol.
- 9. Estimation of SGOT.
- 10.Estimation of SGPT.

Practical Manual

- James G. Cappuccino, Natalie Sherman, Microbiology A laboratory manual, The Benjamin Cummings Publishing Company, Inc, 2005.
- Benson H.J, Microbiological Applications: A Laboratory Manual in General Microbiology, The McGraw-Hill Companies, 2015.

Semester	Code			Title of the Paper				Hour	s	Credits
IV	20 U	MB4CC	C8P	CLINI	CAL MIC PRACT	CROBIOL TICAL	OGY	3		2
Course Outcomes	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO 5
CO1	✓	✓	✓	\checkmark		~	~	~	√	
CO2		✓	✓	\checkmark	✓		✓	✓	✓	✓
CO3	✓	✓	✓	\checkmark		~	✓	~	✓	
CO4	✓	✓	✓	\checkmark		~	√	~	√	
CO5	~	~		~	~	~	~		~	~
	Number of Matches= 40,Relationship : High									

Preparedby: A.FasilaBegum Checked by: 1.K.Vijayalakshmi 2.Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
IV	20UMB4AC7	ALLIED - VII	IMMUNOLOGY II: IMMUNOHAEMATOLOGY	5	3	100	25	75

At the end of this course, students will be able to

- 1. Explicit the historical inventions in Immunohematology and bloodgrouping.
- 2. Acquire the knowledge on components, preservation and storage ofblood.
- 3. Describe the methods for counting of bloodcells.
- 4. Gain the comprehensive knowledge on basics of bloodtransfusion.
- 5. Report the hemolytic diseases of new born, prevention andtreatment.

UNITI

Introduction to Immunohematology _ Definition, Historical overview of Immunohematology, Discovery of blood grouping - ABO grouping - Rh factor, Blood group genetics, Clinical significance of blood groups. Biochemical properties and characteristics of blood group antigens and antibodies. #Identification of natural and immuneantibodies#. Role of hybridoma technology in Immunohematology.

UNITII

Blood – Definition, Composition, morphology and functions of blood cells. Erythropoiesis, Leucopoiesis and Thrombopoiesis. Hemoglobin - structure and function. Collection of blood from adults and infants (vein puncture, fingerstick, heelstick). #Preservation and storage of blood and components#. Preparation and standardization of blood components.

UNITIII

Counting of blood cells - Total RBC count - Diluting fluids, Macro dilution and micro dilution technique. Total WBC count - Diluting fluids, Macro dilution and micro dilution technique. Differential leucocyte count, #Total platelet count#. Anticoagulants - Definition, mode of action, uses, and different types.

UNITIV

Blood Transfusion – Pre-transfusion testing – Basic procedures and techniques for compatibility testing. Emergency and elective techniques, Typing and screening of blood. Techniques for cross matching. Principle and practice of blood transfusion, Clinical consideration in transfusion. Guidelines for the appropriate use of blood, quality assurance. #Types of transfusion reactions#.

UNITV

Hemolvtic disorders Autoimmune Hemolytic anemia, #Immune thrombocytopenia#,Immune neutropenia- Immunohaematological problems in multi transfused patients. Hemolytic disorder of new born - Introduction, due to Rh incompatibility, due to ABO blood group incompatibility, prevention and treatment of HDN.

Self-study portion.

Text Books:

T.B-1. Sheryl A. Whitlock, Immunohematology For Medical Laboratory Technicians, Delmar Cengage Learning, USA, 2010.

T.B-2. Andrew Blann, Gavin knight and Gray Moore, Haematology, Oxford University Press, 2010. **T.B-3.** Kanai L. Mukherjee, Medical laboratory technique, Vol 1& 2, 2nd edition, Tata McGraw Hill Education Private Ltd, New Delhi, 2010.

15 Hours

15Hours

15 Hours

15 Hours

15 Hours

UNIT I	Chapter I, V & VI	T.B-1
UNIT II	Chapter X & XI	T.B-1
UNIT III	Chapter IX	T.B-3
UNIT IV	Chapter VIII	T.B-1
UNIT V	Chapter XIII	T.B-1

Books for Reference:

- 1. Gadkar P.B and Gadakar D.P, Textbook Medical Laboratory Technology,2005.
- 2. Barbara J. Bain, Blood cells, Wiley Black well Publication, 2006.
- 3. Mukerjee, K.L, Medical Laboratory Technologies Vol I III, Tata McGraw Hill, Publishers, New Delhi, 2002.

Web Source:

- 1. <u>https://www.verywellhealth.com/importance-of-hemoglobin-2249107</u>
- 2. <u>https://www.amboss.com/us/knowledge/Oral_anticoagulants</u>
- 3. <u>https://sites.google.com/site/abobbsrheumatology/Home/principles-and-practice-of-blood-transfusions-i-and-ii</u>
- 4. <u>https://www.urmc.rochester.edu/encyclopedia/content.aspx?ContentTypeID=90&</u> <u>ContentID=P02368#:~:text=Hemolytic%20disease%20of%20the%20newborn%2</u> <u>0(HDN)%20is%20a%20blood%20problem,down%20of%20red%20blood%20cell</u> <u>s.</u>

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		Title of the Paper				Hour	rs	Credits	
IV	200	J MB4A	C7	IMMUNOLOGY II: IMMUNOHAEMATOLOGY				5		3	
Course Outcomes		Prog	camme Or (POs)	0 1				Specific (PSOs)	pecific Outcomes SOs)		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO	4 PSO 5	
CO1			\checkmark	✓	~			~	~	✓	
CO2			✓	✓	✓			✓	~	 ✓ 	
CO3			\checkmark	✓	~			\checkmark	~	< ✓	
CO4			\checkmark	✓	~			✓	~	 ✓ 	
CO5			√	~	~			~	~	✓	
	<u> </u>	Nur	nber of M	latches= (30,Relatio	onship :	Modera	ate	I	1	
norodby							Chaolza	.1.1			

Preparedby: A.FasilaBegum Checked by: 1.K.Vijayalakshmi 2.Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
IV	20UMB4AC8 P	ALLIED - VIII	IMMUNOLOGY II: IMMUNOHAEMATOLOGY- PRACTICAL	3	2	100	20	80

Course Outcomes

At the end of this course, students will be able to

- 1. Demonstrate the collection and separation of components ofblood.
- 2. Perform the ABO blood grouping and Rhtyping.
- 3. Describe the methods for counting of bloodcells.
- 4. Estimate the amount of hemoglobin inblood.
- 5. Determine the presence of specific antibodies by varioustechniques.
- 1. Blood collection.
- 2. Separation of serum and plasma from wholeblood.
- 3.Determination of bleeding time and clottingtime.
- 4. Total count of WBC.
- 5.Differential count of WBC.
- 6.Total count of RBC.
- 7. Estimation of hemoglobin.
- 8. Determination of Erythrocyte SedimentationRate.
- 9. Coomb'sTest.

Practical Manual

- Myer's and Koshy's Manual of diagnostic procedures in medical microbiology and immunology/serology. Published by department of clinical microbiology, CMC Hospital, Vellore, TamilNadu.
- 2. Rajan S and Selvi Christy, Experimental procedures in life sciences, Anjana Book House publishers and distributors, Chennai, 2011.

Semester		Code			Title of th	e Paper		Hour	s	Credits
IV	20U	20UMB4AC8P IMMUNOHAE PRACT				MATOLO	GY	3		2
Course Outcomes		Prog	ramme O (POs)	Outcomes Programme Spec			Specific (PSOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO 5
CO1			√	~	~			~	✓	~
CO2			\checkmark	✓	\checkmark			\checkmark	✓	~
CO3			√	~	✓			√	√	~
CO4			√	~	√			~	✓	~
CO5			~					√	~	
		1		•	Number	of Match	nes= 30,R	elationshi	ip :	Moderate

Preparedby: A.FasilaBegum Checked by: 1.K.Vijayalakshmi 2.Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
ш	20UMB3GE1	Generic Elective 1#	MICROBIAL FOOD PRODUCTS	2	2	100	-	100

Course Outcomes

At the end of this course, students will be able to

- 1. Acquire the knowledge on microbes as food and itsproducts.
- 2. Explicit the concept of Probiotics.
- 3. Comment the various productions of microbial products.
- 4. Identify the appropriate unit operations required to produce different types of food products.
- 5. Grasp the knowledge on the importance of food safetyhazards.

UNITI

Fermented Food Products: Role of microorganisms in food and dairy industry. Fermented dairy products - Cheese, Yogurt, Cultured buttermilk, #Kefir and Bread#. Fermented plant food products-Pickles and Sauerkraut.

UNITII

Probiotics and Prebiotics: Production and composition of various probiotics; metabolism and bioavailability of probiotics. Effect of probiotics, prebiotics and symbiotics on human health.#Bioactive food#.

UNITIII

Microbial Products: Microbial production of Pencillin and Tetracycline, Acetic acid,#Lactic acid#, Gluconic acid. Production of vitamins- A,B12and Riboflavin.Enzymes-Amylases, Proteases and Lipases.

UNITIV

Microbes as Food: Fermented beverages-beer, wine and other alcoholic beverages. Microbial preparation of Tempeh, Single cell protein and#Mushroom production#.

UNITV

Microbiological criteria of food safety: Microbial standards for food- FDA, BIS, Food Safety and Standard Act of India. Food certification marks in India- ISI, #Agmark#, FPO, BIS, and FSSAI. Food export control and certification.

Self –study portion.

Text Books:

T.B-1. Charles W.Bamforph and David J. Cook, Food, Fermentation and Microorganisms, Blackwell Pubs, 2005.

- T.B-2.Ronald Ross Watson and VictorR.Preedy, Probiotics, Prebiotics and Synbiotics, Academic Press Elesvier, 2016.
- T.B-3. Patel, A.H. Industrial Microbiology. Macmillan India Ltd, 2005.
- T.B-4. Frazier W.C and Westhoff, D.C, Food Microbiology, Tata McGraw Hill Publishing Ltd, New Delhi, 2014.

UNIT I	Chapter I	T.B-1
UNIT II	Chapter XIV &XV	T.B-2
UNIT III	Chapter X &XI	T.B-3
UNIT IV	Chapter II&XXVII	T.B-1
UNIT V	Chapter XXVII	T.B-4

6 Hours

6 Hours

6 Hours

6 Hours

Books for Reference

- 1. James M. Jay, Loessner, M. J, and Golden D. A, Modern Food Microbiology, 7th edition, 2005.
- 2. Adams, M. R, and Moss, M. O, Food Microbiology, 4th edition, New Age International (Rt) Ltd, New Delhi,2016.

Web Source:

- 1. https://effca.org/microbial-cultures/food-production/
- 2. https://pmj.bmj.com/content/80/947/516
- 3. <u>https://www.news-medical.net/life-sciences/What-are-Recombinant-Proteins.aspx</u>
- 4. https://www.mushroomoffice.com/mushroom-cultivation/
- 5. https://www.cbd.int/financial/greenmarkets/g-certicodex-fao.pdf

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code			Title of th	e Paper		Hours		Credits
ш						OUCTS	2		2	
Course		Program	nme Out	comes		Pro	gramme	Specific	Outcon	nes
Outcomes		(POs) (PSOs)								
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO
										5
CO1	~	~	√	✓	√	~	~	✓	✓	✓
CO2	✓		\checkmark		\checkmark	✓		\checkmark		✓
CO3	✓		√	✓	\checkmark	√		\checkmark	✓	~
CO4	✓		√	~	√	√		√	√	~
CO5	✓ ✓ ✓ ✓					~		\checkmark		✓
		Nu	umber of	Matche	s=38, R	elationsh	ip :High			

Preparedby: Ms.K.Vijayalakshmi Checked by: 1.Dr.N.Packiyalakshmi 2.Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
IV	20UMB4GE2	Generic Elective II #	COSMETIC MICROBIOLOGY	2	2	100	-	100

Course Outcomes

At the end of this course, students will be able to

- 1. Grasp the knowledge on Cosmetic Microbiology.
- 2. Explicit the various product forms in cosmetics.
- 3.Acquire the knowledge on cosmeticingredients.
- 4. Investigate the antimicrobial preservative testing in cosmetics.
- 5. Describe the Cosmetic product regulations.

UNIT I

Introduction to Cosmetic Microbiology: Regulatory definition of Cosmetics. History of cosmetic microbiology- Microbiology as a scientific discipline, Biology of microbes. Broad classification of cosmetic products for skin, #hair and oral care#.

UNIT II

Application of Cosmetics Products: Solutions, creams, lotions, ointment, paste, gels, sticks, tablets, capsules, powders and aerosols. Product Development: Defining the product, selection & sources of ingredients, #formulaoptimization#.

UNIT III

Cosmetic Ingredients: Classification and application in cosmetics – Foaming agents, emulsifiers, and solubilizers. Antioxidants, anti UV compounds, antimicrobial and chelating agents used as preservatives. Perfume: Classification of perfumes. #Perfume ingredients listed as allergens in EU guidelines#.

UNIT IV

Antimicrobial Preservative Testing: General product and raw materials tests -CTFA, ASTM and USP method- Microbial enumeration tests, Tests for specified microorganisms,#Microbiological contamination limits for nonsterile products#, D-value methods and Capacity tests.

UNIT V

Cosmetic Product Regulation: Ingredients, Safety assessment, Efficacy data, Labeling requirements for cosmetic products. Evolution of Cosmetics to Cosmeceuticals.Environmental and safety concerns of cosmetic ingredients. Guidelines on green cosmetics and #challenges in green formulation#. # #Self-study portion

Text Books

T.B-1. Philip A. Geis, Cosmetic Microbiology, 2nd Edition, Taylor & Francis Group, New York, London, 2006.

T.B-2. Wilkinson J.B and Moore R.J, Harry's Cosmeticology –7th edition, Chemical Publishing, New York,2011.

T.B-3. P.P. Sharma, Cosmetics – Formulation, Manufacturing and Quality Control, 4th edition, Vandana Publications Pvt. Ltd., Delhi,2014.

T.B-4. Hilda Butler, Poucher's Perfumes, Cosmetics and Soaps, 10th Edition, Kluwer Academic Publishers.

6 Hours

6 Hours

6 Hours

6 Hours

UNIT I	Chapter I & II	T.B-1
UNIT II	Chapter II	T.B-3
UNIT III	Chapter IV	T.B-2
UNIT IV	Chapter V	T.B-1
UNIT V	Chapter III	T.B-4

Books for Reference

- 1. André O. Barel, Marc Paye, Howard I. Maibach, Handbook of Cosmetic Science and Technology, 3rd Edition, Marianne Mahieu Informa Healthcare USA,Inc.
- 2. Zoe Diana Draelos, Lauren A.Thaman, Cosmetic formulation of skin careproducts.

Web Source:

- 1. <u>https://www.ceway.eu/cosmetic-products-definition-in-the-eu/#:~:text</u>
- 2. https://thebeautybrains.com/2014/05/understanding-the-basic-forms-of-cosmetics/
- 3. <u>https://betaeq.com.br/index.php/en/2019/06/26/cosmetics-ii-classifications-and-applications-of-cosmetics/</u>
- 4. <u>https://www.pharmamanufacturing.com/articles/2014/usp-microbial-examination-nonsterile-products/#</u>
- 5. <u>http://www.opastonline.com/wp-content/uploads/2019/01/cosmetics-vs-</u> cosmeceuticals
- 6. <u>https://cosmeticsinfo.org/ingredient/uv-filter-ingredients-0</u>

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code Title of the Paper					Hours		Credits	
IV	20	UMB3G	E2	COSM	COSMETIC MICROBIOLOGY					2
Course Outcomes		Progra	mme Ou (POs)	tcomes			Program	nme Spec (PSC		comes
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓	\checkmark	\checkmark		√	~	✓	\checkmark		~
CO2			\checkmark	✓	✓			✓	✓	✓
CO3			✓		~			~		✓
CO4	✓	\checkmark	\checkmark	✓	√	✓	✓			
CO5			\checkmark		\checkmark	✓ ✓ ✓ ✓				
	Number of Matches= 32,Relationship : Moderate									

Preparedby: K.Vijayalakshmi

Checked by: 1.Dr.N.Packiyalakshmi 2.Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

B.Sc. MICROBIOLOGY (THIRD YEAR 2022-2023)

SE	COURSE	PAR	COUDGE		Ins.	CREDI	MAI	RKS	тот
Μ	CODE	Т	COURSE	COURSETITLE	Hrs /Week	Т	CIA	ESE	AL
I	20U1LT1/LA1/LF 1/LH1/LU1	Ι	Language – I		6	3	25	75	100
•	20UCN1LE1	Π	English - I		6	3	25	75	100
	20UMB1CC1		Core – I	Introduction to Microbiology and Microbial Diversity	5	5	25	75	100
	20UMB1CC2P	ш	Core – II	Introduction to Microbiology and Microbial Diversity Practical	3	2	20	80	100
	20UMB1AC1		Allied –I	General BiochemistryI: Biomolecules	5	4	25	75	100
	20UMB1AC2P		Allied –II	General BiochemistryI: Biomolecules Practical	3	2	20	80	100
	20UCN1AE1	IV	AEC-I	Value Education	2	2	100	-	100
		TOTAI			30	21			700
	20U2LT2/LA2/LF 2/LH2/LU2	Ι	Language – II		6	3	25	75	100
Π	20UCN2LE2	II	English – II		6	3	25	75	100
	20UMB2CC3	III	Core – III	Bacteriology and Virology	6	5	25	75	100
	20UMB2CC4P		Core – IV	Bacteriology and Virology Practical	3	2	20	80	100
	20UMB2AC3		Allied – III	General BiochemistryII: Bioenergetics and Enzymology	4	3	25	75	100
	20UMB2AC4P		Allied –IV	General BiochemistryII: Bioenergetics and Enzymology Practical	3	2	20	80	100
	20UCN2SE1	IV	Skill Enhancement Course- I @	Soft Skills Development	2	2	100	-	100
		TOTAI	_		30	20			700
ш	20U3LT3/LA3/LF 3/LH3/LU3	Ι	Language- III		6	3	25	75	100
	20UCN3LE3	Π	English – III		6	3	25	75	100
	20UMB3CC5		Core– V	Microbial Physiology and Metabolism	4	4	25	75	100
	20UMB3CC6P	III	Core- VI	Microbial Physiology and Metabolism Practical	3	2	20	80	100
	20UMB3AC5		Allied– V	ImmunologyI:Principles of Immunology	4	3	25	75	100
	20UMB3AC6P		Allied-VI	ImmunologyI:Principles of Immunology Practical	3	2	20	80	100
	20UMB3GE1	IV	Generic Elective I #		2	2	-	100	100
	20UCN3AE2	1,	AEC-II	Environmental Studies	2	2	100	-	100
			TOTAL		30	21			800
IV	20U4LT4/LA4/LF 4/LH4/LU4	I	Language–IV		6	3	25	75	100
	20UCN4LE4	П	English– IV		6	3	25	75	100
	20UMB4CC7	-	Core- VII	Clinical Microbiology	5	5	25	75	100
	20UMB4CC8P	Ш	Core - VIII	Clinical Microbiology Practical	3	2	20	80	100
	20UMB4AC7		Allied– VII	ImmunologyII: Immunohaematology	5	3	25	75	100
	20UMB4AC8P		Allied–VIII	ImmunologyII: ImmunohaematologyPractical	3	2	20	80	100
	20UMB4GE2	IV	Generic Elective – II#		2	2	-	100	100
	20UCN4EA	V	Extension Activities	NCC, NSS, etc.	-	1	-	-	-
			TOTAL		30	21			700
V	20UMB5CC9		Core – IX	Microbial Genetics	6	5	25	75	100
	20UMB5CC10		Core – X	Molecular Biology and Recombinant DNA Technology	5	5	25	75	100
	20UMB5CC11	III	Core – XI	Industrial Microbiology	5	5	25	75	100
	20UMB5CC12P		Core - XII DSE – I **	Microbial Genetics, Molecular Biology and Recombinant DNA Technology and Industrial Microbiology Practical	5	5	20	80 75	100
	20UMB5DE1A/B 20UMB5SE2A/B		DSE – I ** Skill Enhancement Course II@		5	4 2	- 25	100	100
	20UMB5SE2A/B 20UMB5SE3A/B	IV	Skill Enhancement Course – III@		2	2	-	100	100
	20UMB5EC1		Extra Credit Course – I	General Intelligence for competitive Examination	-	4*		100*	100*
		1	TOTAL		30	28		1	700
	20UMB6CC13	1	Core- XIII	Food and Dairy Technology	5	5	25	75	100
VI	20UMB6CC14	1	Core- XIV	Environmental Microbiology	5	5	25	75	100
	20UMB6CC15		Core - XV	Soil and Agricultural Microbiology	5	5	25	75	100
	20UMB6CC16P	III	Core - XVI	Food and Dairy Technology Environmental Microbiology, Soil and	5	5	20	80	100
	20UMB6DE2A/B		DSE II **	Agricultural Microbiology Practical	5	-		75	100
	20UMB6DE2A/B 20UMB6DE3A/B		DSE II ** DSE III **			4	25 25	75 75	
	20UMB6DE3A/B 20UCN6AE3	IV	AEC-III	Gender Studies	4	4	100	- 75	100 100
	20UCN6AES 20UMB6EC2	1 V	Extra Credit Course – II	Microbiology for competitive examinations	_	1 4*		- 100*	100 100*
				C7 1	-	4* 1*		100.	100*
	20UMBAECA		Extra Credit Course for all	Online Course	-			-	-
			TOTAL		30	29			700
			GRAND TOTAL Grant Total and CGPA.		180	140	-	-	4300

Not Considered for Grant Total and CGPA.

Generic Electives for other major electives

SEMESTER	COURSE CODE	COURSE TITLE
III	20UMB3GE1	Microbial Food Products
IV	20UMB4GE2	Cosmetic Microbiology

@Skill Enhancement Courses

SEMESTER	ELECTIVE NO	COURSE CODE	COURSE TITLE
V	П	20UMB5SE2A	Biofertilizers and Biopesticides
v	11	20UMB5SE2B	Analytical Techniques
Ň	TTT	20UMB5SE3A	Textile Microbiology
v	III	20UMB5SE3B	Mycology

****Discipline Specific Electives**

SEMESTER	DS	COURSE CODE	COURSE TITLE
V	т	20UMB5DE1A	Bioinformatics and Biostatistics
v	1	20UMB5DE1B	Medical Entomology
	п	20UMB6DE2A	Plant Pathology
	II	20UMB6DE2B	Applied Phycology
VI		20UMB6DE3A	Social and Preventive Medicine
	III	20UMB6DE3B	Biosafety and Intellectual property rights

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
V	20UMB5CC9	Core –IX	MICROBIAL GENETICS	6	5	100	25	75

Course outcomes:

At the end of the course, students will be able to

- 1. Explicit the historical inventions and the basic concept of genetics
- 2. Explain the system of replication methods on DNA.
- 3. Describe the gene transfer mechanisms and its regulations.
- 4. Acquire the knowledge on transcription and translation process.
- 5. Describe the molecular approaches on Gene regulation.

UNIT I

Introduction to Genetics: Historical Background- Mendel's laws of inheritance. DNA as genetic material: experiments of Griffith, Avery, "Hershey Chase experiment". Artificially synthesized Nucleic acid : Peptide Nucleic Acid (PNAs) . RNA as a genetic material- Fraenkel Conrat & Singer experiment. Organization of DNA in prokaryotes (E. coli) and viruses.

UNIT II

DNA Replication: Semi conservative model- Meselson and Stahl experiment, Cairns Autoradiography Experiment and Taylor's Experiment. Replication of circular DNA moleculerolling circle mechanism, θ mode of replication. Linear mode of replication. #Enzymes involved in DNA replication #. Replication of RNA – Reverse transcriptase.

UNIT III

Gene Expression: concept of gene, gene structure, Molecular mechanism of Transcription and Translation of Prokaryotes and # Eukaryotes #: Transcription : Initiation, Elongation, Termination in Prokaryotes. Translation: Activation of amino acid, Initiation, Elongation, Termination in Prokaryotes. Post transcriptional and Post translational modifications.

UNIT IV

Gene Regulation in Prokaryotes: The Operon concept- lac and trp operon (induction and repression) structure of operon- role of cyclic AMP in catabolite repression, attenuation control -#promoters# – activators and repressors.

UNIT V

Bacterial Recombination: Concepts of haploid genomes, Transformation - Discovery, Mechanism of natural competence - Conjugation - Discovery, F+ v/s F-, Hfr+ v/s F-Transposable elements # Transfection # and Transduction (generalized and specialized). Abortive transduction.

Self-study portion

18 Hours

18 Hours

18 Hours

18 Hours

T.B-1 Gardner, E.J., Simmons, M.J., Snustad, D.P. Principles of Genetics. John Wiley & sons,1991.

T.B-2 DavidFrifelder. Microbial Genetics, Narosa publishing house, New Delhi, 1990.

T.B-3 Daniel, L. Hartl and Elizabeth W.and Jones. Genetics-Analysis of Genes and Genomes, Jones and Bartlett publishers, UK, 2001.

T.B-4 Jeremy M. Dale. Molecular Genetics of Bacteria (3rd edition). John Wiley and sons, NewYork, 1998.

T.B-5 Old, R.S. and Primrose, S.B. Principles of Gene Manipulation, 4th Ed., Blackwell Scientific Publications, London, 1989.

T.B-6 Veer balarastogi, Fundamentals of molecular biology, Ane's student edition, India, 2008.

Chapter VII	T.B-1
Chapter IX	T.B-2
Chapter XIV	T.B-3
Chapter II	T.B-4
Chapter XII& XIII	T.B - 5 & 6
	Chapter IX Chapter XIV Chapter II

Books for Reference:

1. Larry Synder and Wendy Champness. Molecular Genetics of Bacteria (2nd edition). American Society for Microbiology, Washington, 2003.

2. Lodish, H., Baltimore, D. Berk, A. Zipsury, S.L., Matsudaira, P. Darnell, J. Molecular Cell Biology. Scientific American Books, 1995.

3. MalorSr, Cronan Jr. JE. Freifelds D. Microbial Genetics. Jones and Bartlett Publishers, 1994.

4. Monroe W.Stickberger. Genetics (3rd edition). Prentice/Hall of India Pvt. Ltd., NewDelhi, 2003.

Web Source:

1.http://www.biologydiscussion.com/dna/replication/dna-replication-3-possible-ways-and-experiments-with-diagram/15508

2.http://www.biologydiscussion.com/gene/gene-expression/regulation-of-gene-

expression-in-prokaryotes-with-diagram-3/1558

3.https://openoregon.pressbooks.pub/mhccmajorsbio/chapter/dna-organization-inside-a-cell/

Semester		Code		Title of the Paper				Hours	5	Credits
V	20UMB5CC9			MICRO	OBIAL G	GENETI	CS	6		5
Course Outcomes		Progra	amme C (POs	Outcomes		Pr	ogramm	e Specific (PSOs)	c Outcor	mes
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	~	✓	~			~		✓	~	 ✓
CO2	~	~	~				√	~	~	~
CO3	~		~					~	~	~
CO4	~	✓	~	✓				~	~	~
CO5	~					~		~	~	~
	Number of Matches= 31, Relationship :Moderate									

Prepared by:

Dr. H. Vajiha Banu

Checked by:

1. Dr.M.Mohamed Mehroop Raja 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Someston	Code	Course	Title of the Hours		Credita	Max.	Internal	External
Semester	Code	Course	Course	Hours Credits		marks	marks	marks
V	20UMB5CC10	Core – X	MOLECULAR BIOLOGY AND RECOMBINANT DNA TECHNOLOGY	5	5	100	25	75

Course Outcomes:

At the end of the course, students will be able to

1. Acquire the knowledge on structure and organization of nucleic acids

- 2. Describe the principles on mutation.
- 3. Explore the knowledge of DNA repair mechanism
- 4. Acquire the knowledge on gene cloning and DNA Analysis
- 5. Describe the knowledge on Genetic recombination

UNIT I

Introduction to Nucleic acid: DNA structure – Miescher to Watson and Crick, salient features of double helix, physical and chemical properties of DNA and its types – RNA structure- types-tRNA, mRNA and rRNA. Genetic code and wobble hypothesis. #Direction of Protein synthesis#.

UNIT II

Mutations: Occurrence, kinds of mutation, spontaneous and induced mutation, Mutagens, detection of mutation, Lethal mutations, Biochemical mutation, #Phenotypic effects of mutation#, Molecular basis of mutation, Significance and Practical applications of mutation.

UNIT III

DNA repair mechanism: Systems that safeguard DNA. DNA methylation and DNA repair mechanisms – excision repair, direct repair, mismatch repair, recombinational repair, SOS response, # photoreactivation#, recombination repair and glycosylase system.

UNIT IV

Gene Cloning: The basic principles of gene cloning and DNA Analysis, The advent and importance of gene cloning, Polymerase chain reaction, # Vectors for Gene cloning#, Purification of DNA from Living cells, Manipulation of purified DNA, Introduction of DNA into Living cells.

UNIT V

Genetic recombination: Requirements, molecular basis, genetic analysis of recombination in bacteria- site specific, homologous, non-homologous recombination, reciprocal and #nonreciprocal recombination#.

Self-study portion.

15 Hours

15 Hours

15 Hours

15 Hours

T.B-1 Daniel L. Hartl and Elizabeth W. Jones. Genetics-Analysis of Genes and Genomes, Jone and Bartlett publishers, UK, 2001.

T.B-2. Gardner E.J., Simmons M.J., Snustad D.P. Principles of Genetics. John Wiley & sons, 1991.

T.B-3. Friedberg ,E.C., Walker, C.C., Siede, W. DNA repair and mutagenesis – ASM Press,1995.

T.B-4. Veer BalaRastogi. Fundamentals of Molecular Biology, Ane Books India, 2008

UNIT I	Chapter IV & V	T.B-1
UNIT II	Chapter III	T.B-2
UNIT III	Chapter IX	T.B-4
UNIT IV	Chapter XVI	T.B-4
UNIT V	Chapter VI	T.B- 3

Books for Reference:

- 1. Jeremy M. Dale. Molecular Genetics of Bacteria (3rd edition). John Wiley and sons, NewYork, 1998.
- 2. Larry Synder and Wendy Champness. Molecular Genetics of Bacteria (2nd

edition). American Society for Microbiology, Washington, 2003.

3. Malor, S.R., Cronan, J.E. and Freifelds, D. Microbial Genetics. Jones and Bartlett Publishers, 1994.

4.Old, R.S. and Primrose, S.B. Principles of Gene Manipulation, 4th Ed., Blackwell Scientific Publications,London,1989.

Web Source:

- 1.<u>https://www.britannica.com/science/nucleic-acid</u>
- 2.<u>https://www.britannica.com/science/mutation-genetics</u>
- 3.<u>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5474181/</u>
- 4.https://www.cheric.org/files/education/cyberlecture/e200402/e200402-301.pdf
- 5. https://biologydictionary.net/genetic-recombination/

Semester	(Code		Title of the Paper				Hour	S	Credits
V	V 20UMB5CC10				LAR BIO DMBINAN CCHNOL	NT DNA	ND	5		5
Course		Prog	ramme (POs	Dutcomes	5	Р	rogramn	ne Specific (PSOs)	Outcom	es
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO 2	PSO3	PSO 4	PSO5
CO1	~	~	~			~	~	\checkmark	~	
CO2	~	~	~		~	~	~	\checkmark		~
CO3	~	~	~		\checkmark	~	~	\checkmark		\checkmark
CO4	~	~	~	\checkmark	~	~		\checkmark	~	\checkmark
CO5	~		~	✓		\checkmark		\checkmark	~	\checkmark
	Number of Matches= 39, Relationship : HIGH									

Prepared by:

1. Dr. N. Packialakshmi

Checked by

1. Dr.M.Mohamed Mahroop Raja

2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the	Hours	Credits	Max.	Internal	External
Semester	Code	Course	Course	nours	Creuits	marks	marks	marks
			INDUSTRIAL					
V	20UMB5CC11	Core – X1	MICROBIOLOGY	5	5	100	25	75

Course Outcomes:

At the end of the course, students will be able to

- 1. Acquire the knowledge on screening techniques
- 2. Describe the principles of fermentation media formulation strategies.
- 3. Explore the knowledge of fermenter configurations and types.
- 4. Determine the microbes involved in Industrial products.
- 5. Investigate the knowledge on downstream processing.

UNIT I

15 Hours

General concepts of industrial microbiology: History and scope of industrial microbiology. Screening techniques of industrially important microorganisms - Primary screening and Secondary screening. Microbial Strain Improvement -#Mutation and Mutant selection#, RecombinationandProtoplasmic fusion.

UNIT II

Fermenter and types: Factors involved in fermenter design, Fermenter configurations - Batch fermenter, Continuous stirred tank fermenter, Tubular fermenter, Fluidized bed fermenter, Air-Lift Bioreactor, #Cylindro-Conical Bioreactor#, Cyclone Column Bioreactor, Photobioreactor Hollow-fiber Bioreactor.

UNIT III

Upstream Process: Principles of sterilization, Sterilization of Equipment, Production media and Air. Fermentation media formulation strategies, carbon, nitrogen, vitamin and mineral sources, role of buffers, precursors, inhibitors, inducers and antifoams, #Screening for production media#.

UNIT IV

Downstream Process: Intracellular product- Cell Disruption-Physical, chemical and enzymatic method. Extracellular product - Solid liquid separation - flotation, flocculation, filtration and centrifugation, Concentration- evaporation, Liquid- Liquid extraction, Membrane filtration, precipitation and adsorption, Purification by chromatography- gel filtration, #Ion exchange and affinity#, Formulation- drying, freeze drying and crystallization.

UNIT V

Microbial products: Microbial production - Organic acids - Citric acid and Lactic acid. Antibiotics- Penicillin and Streptomycin. Enzymes- Amylases and Proteases. Vitamins -Riboflavin and L- Ascorbic acid. Yeast and its uses. Production of Single cell proteins -#Bacterial proteins# and Algal proteins.

Self-study portion.

15 Hours

15 Hours

15 Hours

T.B-1 Patel, A.H. Industrial Microbiology. Macmillan India Ltd, 2005.

T.B-2Stanburry, P.F., Whitaker A and Hall S.J. Principles of Fermentation Technology, Butterworth- Heinemann Press,2003.

UNIT I	Chapter III	T.B-1
UNIT II	Chapter VII	T.B-1
UNIT III	Chapter X& XII	T.B-1
UNIT IV	ChapterXVI& XVII	T.B-1
UNIT V	Chapter X	T.B-2

Books for Reference:

- 1. Demain, A.L and Davies, J.E. Manual of Industrial Microbiology & Biotechnology, ASM press,1999.
- 2. Prescott and Rehm. Industrial Microbiology. Wiley and Sons, 1979.
- 3. Sikyta, B. Methods in Industrial Microbiology, Ellis Horwood Limited, 1983.
- 4. Casida, L. E. Industrial Microbiology. New Age International Publishers, 1968.

Web Source:

- 1 .<u>http://www.generalmicroscience.com/industrial-microbiology/screening-techniques-and-</u>its-details/
- 2. <u>http://courseware.cutm.ac.in/wp-content/uploads/2020/06/large-scale-sterilization.pdf</u>
- 3. https://biologyease.com/types-of-fermentors/
- 4. <u>https://www.vedantu.com/biology/microbes-in-industrial-products</u>
- 5. <u>https://www.mt.com/in/en/home/applications/L1_AutoChem_Applications/fermentation/</u> <u>downstream-processing-in-biotechnology.html</u>

Semester	(Code		Tit	le of the F	Paper		Hour	S	Credits
V	20UM	IB5CC1	1 IN	DUSTRI	AL MICF	ROBIOLO	OGY	5		5
Course		Progr	amme C (POs	Outcomes		Programme Specific Outcomes (PSOs)				les
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO 2	PSO3	PSO 4	PSO5
CO1	~		~	✓	~	~	~	✓	~	\checkmark
CO2	~	~				~	~	✓	~	~
CO3	~	~	~			~	~	✓	~	
CO4	~	~	~	✓		~	~		~	\checkmark
CO5	~	~	~	✓		~	~	✓	~	\checkmark
	Number of Matches= 40, Relationship : HIGH									

Prepared by:

1. Dr. N. Packialakshmi

Checked by:

1. Dr.N.Reehana

2.Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
V	20UMB5CC12P	Core – XII	MICROBIAL GENETICS, MOLECULAR BIOLOGY AND RECOMBINANT DNA TECHNOLOGY AND INDUSTRIAL MICROBIOLOGY - PRACTICAL	5	5	100	20	80

Course Outcomes:

At the end of the course, students will be able to

- 1. Extract the Genomic DNA and Plasmid DNA.
- 2. Determine the DNA by DPA method.
- 3. Examine the differentiation of Protoplast and Spheroplast.
- 4. Acquire the knowledge on screening technique.
- 5. Determine the mechanism of Citric acid production.

List of Practicals

- 1. Isolation of bacterial Genomic DNA.
- 2. Isolation of Plasmid DNA.
- 3. Electrophoretic analysis of DNA.
- 4. Quantitative estimation of DNA by DPA method.
- 5. Restriction digestion and analysis.
- 6. Scoring of auxotrophic mutants.
- 7. Isolation of Protoplast.
- 8. Isolation of Spheroplast.
- 9. Isolation and Screening of antibiotic producers by crowded plate technique
- 10. Secondary Screening Protocols Kirby Bauer method
- 11. Isolation of cellulase producing Microorganisms.
- 12. Production of Citric acid.
- 13. Industrial / Institute visit.

Practical manual

- 1. Aurubels . Current protocols in Molecular Biology, John Wiley, 1998.
- 2. Sambrook, J. Fritsch, E. F. And Maniatis, T. Molecular cloning- A Laboratory Manual 2nd edition. Cold Spring Harbor Laboratory press, USA, 1989
- 3. James G. Cappuccino, Natalie Sherman. Microbiology- A laboratory manual. 6th edition.
- 4. Nupur Mathur. Industrial Microbiology a Laboratory Manual. Aaviskar publishers, 2007.
- 5. Richard H.Baltz, Arnold L.Demain, JulianE.Davies. Manual of Industrial Microbiology and Biotechnology. 3rd edition. 2010.

Semester	C	Code		Tit	le of the I	Paper		Hour	s	Credits	
V	20UMB5CC12P		P	MICROBIAL GENETICS, MOLECULAR BIOLOGY AND RECOMBINANT DNA TECHNOLOGY AND INDUSTRIAL MICROBIOLOGY - PRACTICAL						5	
Course		Progra	amme O (POs)	utcomes		F	Programn	ne Specific (PSOs)	Outcom	es	
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	~	~	~	√				~	~		
CO2	~	~	~					\checkmark	~	~	
CO3	~	~	~				~	✓	~	~	
CO4	~	~	✓	\checkmark			~	\checkmark	~	~	
CO5	~	~	✓	√				✓	~	~	
	Number of Matches= 35, Relationship : HIGH										

Prepared by:

Dr. N. Packialakshmi

Checked by:

1. Dr.N.Reehana

2.Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal Marks	External marks
V	20UMB5DE1A	DSE-I	BIOINFORMATICS AND BIOSTATISTICS	5	4	100	25	75

Course Outcomes:

At the end of the course, students will be able to

- 1. Acquire the knowledge on basic principles and concepts of bioinformatics.
- 2. Gain the knowledge on biological databases.
- 3. Examine the essential existing bioinformatics software effectively.
- 4. Describe the variables in a dataset, and classify variables as quantitative.
- 5. Acquire the relevant knowledge on statistical inference

UNIT I

Basic of Bioinformatics : Internet Perception- Internet Service Providers, WWW, #Search Engines#. Data Mining. Database - Introduction and overview of biological database-Nucleic acid database : Primary-NCBI, DDBJ and EMBL . Secondary- UNIGENE and EMI Genomes.

UNIT II

Protein Sequence Database: SWISS PROT/TrEMBL, PIR. Sequence motif database-Pfam, PROSITE. Protein structure database-PDB, SCOP, CATH. Other relevant database-KEGG, PQS.Finding Scientific articles- #Pubmed, Highwire,# Press, Plos.

UNIT III

Sequence and Alignment : Pairwise alignment: - local, Global, dotplot, dynamic programming. Heuristic method-BLAST and #FASTA#. Multiple Sequence Alignment. Phylogeny and Phylogenetic trees- Types, Different approaches of phylogenetic tree construction - Neighbour joining, Maximum Parsomony and Maximum likelihood.

UNIT IV

Statistics for biology: Introduction to Biostatistics, Frequency distribution, #Variable and attribute#, Line diagram, Bar diagram, Pie chart, Histogram, Mean, Median and Mode, Variance, Standard deviation, Standard error of mean.

UNIT V

Inference : Comparison of variance. Student's t-test, Fisher's t- test, Chi-square test, Analysis of Variance (ANOVA) - One way and two way, multiple comparisons # Correlation and Linear regression #.

Self-study portion.

15 Hours

15 Hours

15 Hours

15 Hours

- **T.B-1** Attwood, T.K. and Parry-Smith, D.J. Introduction to Bioinformatics, Pearson Education Ltd., New Delhi, 2004.
- **T.B-2** David W. Mount (2001) Bioinformatics: Sequence and Genome Analysis. Cold Spring harbor Press
- **T.B-3** Baxevanis, A.D. and Ouellette, B.F.F.(2004). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, John Wiley & Sons
- T.B-4 Basic Bioinformatics,(2005)S.Ignacimuthu, Narosa publishing house
- **T.B-5** Daniel, W.W. (2005) Biostatistics: A foundation for analysis in the Health Sciences. 8th Edition, John Wiley & Sons Inc

UNIT I	Chapter I	T.B-3
UNIT II	Chapter III & IV	T.B-2
UNIT III	Chapter XII,IX	T.B-1
UNIT IV	Chapter I &III	T.B-4
UNIT V	Chapter XVIII	T.B-5

Books for Reference:

- 1. Westhead, DR. Paris, JH. and Twyman, RM. Instant Notes: Bioinformatics Viva Books Private Ltd, New Delhi, 2003.
- Arthur M. Lesk. Introduction to Bioinformatics, Oxford University Press, New Delhi, 2003
- 3. Bernard Rosner : Fundamentals Of Biostatistics 8th Edition. Cengage Learning, 2015.

Web Source:

- 1. <u>https://www.bits.vib.be/training-list/111-bits/training/previous-trainings/122-basic-bioinformatics</u>
- 2. https://www.bioalternatives.com/en/bioinformatics-basic-functional-data-processing/
- 3. https://www.ncbi.nlm.nih.gov/guide/howto/learn-basics/
- 4. <u>http://biostatcourse.fiu.edu/</u>

Semester		Code			Title of	the Paper		H	Iours	Credits	
V	200	J MB5D	E1A	BIO		/ATICS ATISTI(5		4	
Course Outcomes		Prog	ramme O (POs)			Programme Specific Outcomes (PSOs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO3 PSO4		
CO1	~		✓		~	~		✓			
CO2	~	~			~	 ✓ 	~			✓	
CO3	√		√	~	~	✓		~	~		
CO4		~	\checkmark	~	~	✓	~	✓	~	✓	
CO5	✓		✓	~	~	~		~	~	~	
	Number of Matches= 35, Relationship : High										

Prepared by: Dr.P.Sivalingam Checked by: 1.Dr.N.Reehana 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External Marks
V	20UMB5DE1B	DSE-I	MEDICAL ENTOMOLOGY	5	4	100	25	75

Course outcomes:

At the end of the course, students will be able to

1. Explain the history, classification and distinguished features of Arthropods.

2. Examine the role of insects as vectors of diseases and their effects on human populations

3. Summarize the structure, morphology and anatomy of insects.

4. Analyze the public health importance and the epidemiology of the disease pathogens

5.Describe the integrated pest management (IPM) techniques that are helpful in diagnosing, preventing, and controlling disease vectors.

UNIT I

Arthropods: History of Medical Entomology – Definition and Scope- Arthropods of Public Health importance - Taxonomy, classification - order- family - general characters. Modes of disease transmission: vertical and horizontal transmission. #Introduction to ecology and ecosystem of vectors#.

UNIT II

onchocerciasis. Anthroponotic diseases: Malaria. filariasis. visceral leishmaniasis. trypanosomiasis, # Chagas disease #, scrub typhus, tick typhus. Bacterial and rickettsial pathogens.

UNIT III

Physiology of Insects: Insect Morphology – General structure and metamorphosis-.Insect internal anatomy and physiology - Insect external anatomy. Insects Digestive System and Nervous System -Insects - Reproductive System.

UNIT IV

Zoonotic Diseases: Cutaneous leishmaniasis, Schistosomiasis, plague, Kyasanur Forest Disease (KFD), #Leptospirosis#, Dracunculiasis - Disease vectors - distribution and transmission socio-economic impact on human population.

UNIT V

Insects: Insect Biodiversity; Collecting and preserving insects. Disease caused by Insects: Houseflies, lice, bugs, [#]wasps, bees, beetles[#], spiders, ants - distribution and impact on human health - toxins, venoms - allergy, asthma. Integrated Pest Management Techniques (IPM).

Self-study portion.

15 hours

15 hours

15 hours

15 hours

15 hours

T.B-1 Roy D.N. and Brown A.W.A. 1970. Entomology (Medical and Veterinary) including insecticides & insects & Rat control; The Bangalore Printing & Publishing Co. Ltd., Bangalore **T.B-2** Harwood R.F. and James M.T. 1979. Entomology in Human and animal health. Macmillan Publishing Co., Inc, London; 7 Ed pp 548 3. Service M.W. 2000.

T.B-3Rozendaal, J.A 1997. Medical Entomology for students 4thedn. Cambridge Univ. Press, UK.

T.B-4 Vector Control - Methods for Use by Individuals and Communities, World Health Organization, Geneva.

T.B-5 Nicholas R. H. Burgess. 1981. Arthropods of Medical importance, Published by Noble Books Ltd. Hampshire

Chapter I	T.B-1
Chapter IV	T.B-2
Chapter VI & VII	T.B-3
Chapter III	T.B -4
Chapter IV	T.B 5
	Chapter IV Chapter VI & VII Chapter III

Books for Reference:

- 1. Kenneth G. V. Smith. 1973. Insects and other Arthropods of Medical Importance.
- Ernst Mayr, E. G. Linsley and R. L. Usinger. 1953. Methods and Principles of Systematic Zoology.

Web Reference:

1.<u>https://www.conops.gr/integrated-management-of-arthropods-of-public-health-importance/?lang=en</u>

- 2.<u>https://wiki.bugwood.org/Insect_Biology</u>
- 3.<u>https://extension.psu.edu/integrated-pest-management-ipm-tactics</u>

Semester		Code		Tit	tle of the	Paper		Hours	S	Credits
V	20 UN	MB5DE1	В	MEDICA	AL ENT	OMOLO	GY	5		4
Course Outcomes		Progra	mme O (POs)	utcomes	tcomes Programme Specific Outcom (PSOs)				omes	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO ₂	4 PSO5
CO1	~	\checkmark				~	~	~		✓
CO2	~	√			~	~	~			~
CO3	~	~				~	~			
CO4	~	\checkmark	~		\checkmark	~	~	~		
CO5	~	✓	~	✓	✓			~	v	
		Numl	ber of N	Iatches=3	32 Relat	ionship	:Modera	te		

Prepared by:

Dr. H. VajihaBanu

Note:

Checked by:

Dr.N.Packialakshmi
 Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the	Houng	Credits	Max.	Internal	External
		Course	Course	Hours	Creans	marks	marks	marks
V	20UMB5SE2A	SEC - II	BIOFERTILIZERS AND BIOPESTICIDES	2	2	100	-	100

Course Outcomes:

At the end of the course, students will be able to

- 1. Acquire the knowledge on symbiotic Nitrogen fixers.
- 2. Explore the knowledge on Non-Symbiotic Nitrogen and Phosphate fixers.
- 3. Determine the field application of Ecto and Endo mycorrhizae.
- 4. Summarize the comprehensive knowledge on Mass production technology of bio-pesticides.
- 5. Analyze the importance of Impediments and limitations in production and use of Biopesticide.

UNIT I

General aspect and Symbiotic Nitrogen Fixers: Introduction, Scope, Importance and Classification of Biofertilizers – Microbes used as bio-fertilizer – Isolation, Identification, Field application and large-scale production of following Symbiotic fertilizers -#*Rhizobium*#, *Anabaena*, *Azolla*.

UNIT II

Non-Symbiotic Nitrogen and Phosphate Fixers: Isolation, Identification and large-scale production and field application of *Azospirillium*, *Azotobacter*, *Clostridium* and *Klebseilla*. Phosphate solubilizers: Isolation, characterization, # inoculum production#, field application of *Bacillus* and *Pseudomonas* - Phosphate solubilization mechanism.

UNIT III

Mycorrhizal Biofertilizers: Introduction, Scope and general account on mycorrhizae – Classification - Method of collection and isolation (Wed sieving and decanting method) – Culture of mycorrhizae in Modified Melin-Norkrans medium (MMN) - Field application of Ecto and Endo mycorrhizae.# National and Regional Biofertilizers production# and Development Centres.

UNIT IV

Biopesticides –History and concept of biopesticides. Importance, scope and potential of biopesticide.concepts and classification of biopesticides. Mass production technology of biopesticides. Biopesticides – #Viral origin#, fungal origin.

UNIT V

Bacterial origin of Biopesticides – *Bacillus thuringiensis* mechanism of action and application. Advantages of biopesticides and commercialization. #Methods of quality control# and techniques of biopesticides. Impediments and limitations in production and use of biopesticides.

Self-study portion.

- ---

6 Hours

6 Hours

6 Hours

6 Hours

T.B-1 SubbaRao, N.S. Advances in Agricultural Microbiology, Butterworth-Heinemann, 2016. **T.B-2**OpenderKoul andDhaliwal, G.S. Microbial Biopesticides . CRC press, New

Delhi, 2001.

UNIT I	Chapter I	T.B-1
UNIT II	Chapter XI	T.B- 1
UNIT III	Chapter XII & XIII	T.B-1
UNIT IV	Chapter I& IV	T.B- 2
UNIT V	Chapter III	T.B- 2

Books for reference:

- 1. Mukherjee, N. and Ghosh T. Agricultural Microbiology, Kalyani Publishers, New Delhi.1998.
- 2. Rangaswami, G. and Bagyaraj, D.J. Agricultural Microbiology. Prentice Hall of India Pvt. Limited, New Delhi. 1993.
- 3. Cook RJ & Baker KF. The Nature and Practice of Biological Control of Plant Pathogens. APS, St Paul, 32 Minnesota.1983.
- 4. Campbell R. Biological Control of Microbial Plant Pathogens. Cambridge Univ. Press, Cambridge.1989.

Web Source:

- 1. https://www.krishisewa.com/organic-agriculture/115-biofertilizers.html
- 2. https://gcwgandhinagar.com/econtent/document/1587179065unit4.1biolo.nitrio.fixation.pdf
- 3. <u>https://biocyclopedia.com/index/biotechnology/plant_biotechnology/biofertilizers/biotech_mycorrhiz</u> <u>ae_biofertilizer.php</u>
- 4. https://www.bpia.org/history-of-biopesticides/
- 5. https://en.wikipedia.org/wiki/Bacillus_thuringiensis

Outcomes:

Semester	(Code		Tit	le of the l	Paper		Hours		Credits	
V	20UN	IB5SE2	A	BIOFERTILIZERS AND BIOPESTICIDES				2		2	
Course		Prog	ramme (Outcomes	5	Programme Specific Outcomes					
Outcomes		(POs)						(PSOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO 2	PSO3	PSO 4	PSO5	
CO1	~	~	~	√		~	~	✓	~	~	
CO2	~	~	~	\checkmark		~	\checkmark	\checkmark	~	~	
CO3	~	~		\checkmark		~		\checkmark	~		
CO4	~	~	~			~	~	~	~		
CO5	~	~	~		~	~		\checkmark	✓	~	
	· · ·	N	lumber o	of Matche	es= 39, Re	elationship	: HIC	θH			

Prepared by:

Checked by:

Dr. N. Packialakshmi

1. Dr.H.VajihaBanu 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
V	20UMB5SE2B	SEC - II	ANALYTICAL TECHNIQUES	2	2	100	-	100

Course Outcomes:

At the end of the course, students will be able to

- 1. Describe the working principles of microscopy.
- 2. Examine the principles and applications of chromatography techniques.
- 3. Acquire the knowledge on Electrophoresis.
- 4. Examine the working principles and application of spectrophotometer.
- 5. Gain the comprehensive knowledge on centrifugations.

UNIT I

Microscopy: Basic Principles and Applications -Bright field, #Dark field Microscopy#, Fluorescence Microscopy, Phase contrast Microscopy, Confocal Microscopy, Electron Microscopy – Scanning and Transmission Electron Microscopy (SEM and TEM).

UNIT II

Spectrophotometry: Basic Principles and Applications -UV Spectroscopy, Raman spectroscopy, # Colorimetry and Turbidimetry #, Fourier transform infrared spectroscopy (FTIR), Atomic Absorption Spectroscopy (AAS), Nuclear Magnetic Resonance (NMR).

UNIT III

Centrifugation: Basic Principles and Applications- Preparative and Analytical centrifugation, fixed angle and #swinging bucket rotors#. Relative Centrifugal Force (RCF), sedimentation coefficient, differential centrifugation, density gradient centrifugation and ultracentrifugation.

UNIT IV

Chromatography: Basic Principles and Applications- Paper chromatography, #Thin layer Chromatography #, Gel filtration chromatography, Ion exchange Chromatography, Affinity Chromatography, Gas Liquid Chromatography and High Performance Liquid Chromatography .

UNIT V

Electrophoresis: Basic Principles and Applications -native polyacrylamide gel electrophoresis, SDS- polyacrylamide gel electrophoresis, #2D gel electrophoresis#, Agarose gel electrophoresis.

Self-study portion.

6 hours

6 hours

6 hours

6 hours

6 hours

T.B-1. Cooper G.M. and Hausman R.E. The Cell: A Molecular Approach. 5th Edition. ASM Press & Sunderland, Washington D.C., Sinauer Associates, MA.2009.

T.B-2. Karp G. Cell and Molecular Biology: Concepts and Experiments. 6th edition. John Wiley & Sons. Inc.2010.

T.B-3. Wilson K and Walker J. Principles and Techniques of Biochemistry and Molecular Biology. 7th Ed., Cambridge University Press.2010.

T.B-4. Willey MJ, Sherwood LM & Woolverton C J. Prescott, Harley and Klein's Microbiology. 9thEd., McGraw Hill.2013.

T.B.5. Nelson DL and Cox MM. Lehninger Principles of Biochemistry, 5th Ed., W.H. Freeman and Company.2008.

UNIT I	Chapter VII	T.B-5
UNIT II	Chapter II	T.B-2
UNIT III	Chapter V	T.B-1
UNIT IV	Chapter IV	T.B-4
UNIT V	Chapter IX	T.B-3

Books for Reference:

- 1. Nigam A and Ayyagari A. Lab Manual in Biochemistry, Immunology and Biotechnology. Tata McGraw Hill.2007.
- 2. M.H.Fulekar and BhawanaPaney. Bioinstrumentation. I K International Publishing House Pvt. Ltd.2013.

Web Source:

- 1. https://www.sciencedirect.com/topics/chemistry/centrifugation
- 2. https://www.news-medical.net/health/Spectroscopy-Types.aspx
- 3. https://www.sciencedirect.com/topics/materials-science/electrophoresis-technique

Semester		Code			Title of th	ne Paper		Hour	s	Credits		
v	20UMB5SE2B ANALYTI				LYTICA	L TECHN	IQUES	2		2		
Course Outcomes		(POs)						Specific (PSOs)	Specific Outcomes (PSOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO	4 PSO		
										5		
C01	~		~	✓	✓	~		~	~	 ✓ 		
CO2	~	~	~	√		~	~	~	~			
CO3	~	~	~	√		~	~	~	~			
CO4	√	✓	~	\checkmark		✓	~		~			
CO5		~	✓	✓		~	~	~	~			
		N	umber o	f Matches=	= 34,Rela	tionship :	High	<u> </u> 	<u> </u>			

Prepared by: Dr.P.Sivalingam Checked by: 1.Dr.K.Vijayalakshmi 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Paper	Hours	Credits	Max. marks	Internal marks	External marks
v	20UMB5SE3A	SEC - III	TEXTILE MICROBIOLOGY	2	2	100	-	100

Course Outcomes:

At the end of the course, students will be able to

- 1. Acquire the knowledge on microorganisms used in textile industry.
- 2. Describe the natural fiber types and processingon textile industry.
- 3. Examine the various enzymes used in the cotton textile processing.
- 4. Gain the knowledge on biomaterials in the healthcare textile.
- 5. Analyze the textile and fabric antimicrobial testing.

UNIT I

Textile Industry: Introduction, types of microorganisms found on textile fibres, conditions favoring the action of microorganisms. Types of destruction caused by microorganisms (Cotton and Wool), #prevention of growth of microorganisms#.

UNIT II

Natural Fibres: Bioprocessing of cotton and their characteristics-Physical and Chemical properties of cotton, Desizing of cotton fabric, Scouring of Cotton fabrics. Enzymatic bleaching. Bioprocessing of wool and their characteristics. #Physical and Chemical properties of wool fibers# and wool quality assessments.

UNIT III

Bioprocessing of Organic Cotton Textiles: Warp yarn sizing and fabrication. Effect of biodesizing process variables- #Box Behnken design#. Bio scouring of organic cotton using enzymes. Mercerisation of cotton material. Antimicrobial finishing of cotton.

UNIT IV

Biomaterials for Health Care Textiles: health care textiles, Dressing types and usage, antimicrobial fabrics- #chitosan#. Enzymes in medical applications. Nanofibers and Nanotechnology in textiles. Role of Microbes in textile industry.

UNIT V

Textile and Fabric Antimicrobial Microbiology Testing: Antimicrobial assessment on textile materials (AATCC 30), Assessment of Antimicrobial Finishes on textile materials (AATCC 100), Parallel streak method (AATCC 147), # Microbial Enumeration test (USP 61), Test for specified microorganisms (USP 62) #.

Self-study portion.

6 Hours

6 Hours

6 Hours

6 Hours

T.B-1. Vigneswaran .C. Ananthasubramanian. M. and Kandhavadivu,P. Bioprocessing of Textiles. Woodhead Publishing India PVt.Ltd . 2014.

T.B-2. Jiri. M, Periyasamy A.P., Venkataraman. Textiles and Their Use in Microbial Protection. CRC Press. 2021..

T.B-3. Ibrahim Md and Mondal H. Antimicrobial textiles from natural resources. Woodhead Publishing.2021.

UNIT I	Chapter XVII	T.B-3
UNIT II	Chapter III	T.B-1
UNIT III	Chapter XII	T.B-1
UNIT IV	Chapter I	T.B-2
UNIT V	Chapter VI &XIV	T.B-1

Books for Reference:

- 1. Premony Ghosh, Fibre science and Technology, Tata McGraw- Hill Publishing company limited, 2004.
- 2. Amarjit S. Basra, Cotton Fibres- Developmental Biology, Quality Improvement and Textile Processing, CBS Publishers and Distributors, 2002
- 3. N.S.Kaplan N.S.A Practical Guide to Fibre Science, First Edition, Abhishek Publications, 2002.

Web Source:

- 1. https://www.sciencedirect.com/topics/engineering/antimicrobial-textile
- 2. <u>https://annalsmicrobiology.biomedcentral.com/articles/10.1007/s13213-010-0163-8</u>
- 3. <u>https://link.springer.com/article/10.1007/s42452-019-0937-y</u>
- 4. <u>https://www.sciencedirect.com/topics/engineering/antimicrobial-textile</u>

Semester	Code		Title of the Paper				Hours		Credits		
v	20 U	MB5SF	E3A	TEXTILE MICROBIOLOGY				2		2	
Course Outcomes (COs)		Prog	ramme O (POs)	utcomes		Pı	rogramme	e Specific (PSOs)	Outco	mes	
(COS)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSC)4	PSO
											5
CO1	√		√	✓	~	~	~	~			✓
CO2	√		√			~	~	~			✓
CO3	√		√			~	~	~			√
CO4	~	~	✓						~	1	~
CO5	~		√	~	~		~		~	/	√
	Number of Matches= 32, Relationship : Moderate										

Prepared by: Dr.P.Sivalingam Checked by: 1.M.Mohamed Mahroop Raja 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External Marks
V	20UMB5SE3B	SEC -III	MYCOLOGY	2	2	100	-	100

Course outcomes:

At the end of the course, students will be able to

- 1. Summarize the history, characteristics and importance of various types of Fungi
- 2. Determine the metabolism, structure and life cycle of fungi
- 3. Acquire the knowledge on fermented products production by fungi.
- 4. Introspect the knowledge on nutrients transport and its growth conditions.
- 5. Examine the knowledge on medically important fungi and its diagnosis methods.

UNIT I

Introduction and History: General characteristics, Importance of fungi in Human life.Fungi– classification of fungi, Taxonomy and Systematics.[#]Edidermophyton and Microsporurn[#].Yeasts of medical importance- Candida, Cryptococcus. (10%)

UNIT II

Life Cycle : General characteristics of molds, types of reproduction and spore types. Fungal Metabolism, Fungal Growth - Reproduction and Life cycles, Macro fungi- Ascomycota and Basidiomycota. Lichens, their associations and applications[,] #synthetic fungicides# and fungal toxins. (10%)

UNIT III

Nutrition and Genetics of Fungus: Absorption of nutrients, transport mechanism, chemical and physical environment for growth, and fungal attack mechanisms. [#]General information about genetics of fungi[·] Saccharomyces cerevisiae-Model organism, Mycotoxins and Mushroom poisoning Fungi- Ecological importance Mycorrhiza, Lichens: Structure and replication of Lichens.

UNIT IV

Mycotechnology : Fungi in the production of antibiotics, organic acids, vitamins and single cell protein, alcohols, food fermentation and solid substrate fermentation, "Mushrooms cultivation".

UNIT V

Medical Mycology: Culture methods of fungi, Diagnosis, Dimorphism Mycoses –Superficial Opportunistic, #Systemic mycoses#. Host responses to fungal infection-Immunity Antifungal agents.

Self-study portion.

6 Hours

6 Hours

6 Hours

6 Hours

0 11001

ultivatio

Text books:

- **T.B-1**Alexopolous, C.J and C.W. Misra. 1972. Introductory mycology. John Wiley and Sons, New York.
- T.B-2 Burnett, J.H. 1976. Fundamentals of mycology. Edward Arnold Publishers, London.
- **T.B-3** Mehrotra R.S and Aneja K.R (1990). An introduction to Mycology. New Age International Publishers.
- **T.B-4** JagadishChander (1996). A text book of Medical Mycology. Interprint, New Delhi.

Chapter – II	T.B-1
Chapter – III & V	T.B-1
Chapter – VII	T.B-2
Chapter –VI	T.B-3
Chapter –VIII	T.B-4
	Chapter – III & V Chapter – VII Chapter –VI

Books for Reference

- 1. Chakraborty P (2003). A Text book of Microbiology. 2nd Edition, Published by New Central Book Agency (P) Ltd., Kolkata.
- 2. Dimmock, N.J. and Pimrose, S.B. (1994) Introduction to Modern Virology, 4th Edn. Blackwell Scientific Publications, Oxford.
- 3. Conrat, H.F., Kimball, P.C. and Levy, J.A. (1994) Virology, 3rd Edn, Prentice Hall, New Jersey.
- 4. Flint, S.J., Enquist, L.W., Krung, R. Racaniello, VR. And Skalka, A.M. (2000).
- 5. Principles of Virology, MolecularBiology, pathogenesis and control, ASM Press, Washinton D.C.

Web Reference:

- 1. <u>https://courses.lumenlearning.com/boundless-biology/chapter/importance-of-fungi-in-human-life/</u>
- 2. <u>https://bio.libretexts.org/Bookshelves/Introductory_and_General_Biology/Book%3A_General_Biology_(Boundless)/24%3A_Fungi/24.1%3A_Characteristics_of_Fungi/24.1C%3 A_Fungi_Reproduction</u>
- 3. <u>https://www.slideshare.net/AllahDadKhan/importance-of-mushroom-cultivation-a-presentation-by-mr-allah-dad-khan-former-director-general-agriculture-extension-kpk-province-and-visiting-professor-the-university-of-agriculture-peshawar-pakistan</u>

Relationship	Matrix	for	Course	Outcomes,	Programme	Outcomes	and
Programme S	pecific O	utcor	nes:				

Semester		Code		Tit	tle of the	Paper		Hou	rs	Credits
V	20UMB5SE3B			N	AYCOL	OGY		2		2
Course Outcomes		Programme Outcomes Program (POs)							c Outcon	nes
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	~	√	~		~	~	~	~		~
CO2	~	✓	~		~	~	~	~		~
CO3				~	~				~	✓
CO4		✓		✓	~		~		~	~
CO5	~		 ✓ 	~	✓	~		~	✓	✓
Prepared by		Num	ber of M	atches=3	34 Relat	ionship	:Modera	te Checke	11	I

Prepared by:

Checked by:

Dr. H. VajihaBanu

1. Dr.N.Reehana 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the	Hours	Credits	Max.	Internal	External
			Course			marks	Marks	marks
VI	20UMB5CC13	Core – XIII	FOOD AND DAIRY TECHNOLOGY	5	5	100	25	75

Course Outcomes:

At the end of the course, students will be able to

1. Acquire the knowledge on Microbes involved in food microbiology.

- 2. Explore the knowledge on Food spoilage and food poisoning.
- 3. Describe the physical and chemical methods of food Preservation.
- 4. Examine the comprehensive knowledge on quality control of milk.
- 5. Analyze the importance of antimicrobial substances in milk.

UNIT I

Microorganism in Food: Microbes involved in food microbiology- mold, yeast, bacteria. Intrinsic factors - Hydrogen ion concentration (pH), moisture requirement, concept of water activity, #oxidation reduction potential#, nutrient content, inhibitory substances and biological structure. Extrinsic factors-storage temperature, Relative humidity, gases.

UNIT II

Food Spoilage and Food Poisoning: Spoilage of canned foods, cereals, fruits, vegetables, meat egg, butter, bread and fish. Food poisoning: Food intoxication -#Staphylococcal poisoning# and botulism, Food infection – Salmonellosis, Mycotoxins produced by fungi - Aflatoxin in stored food and grains.

UNIT III

Food Preservation: Principles of food preservation, Methods of food preservation -Physicaltemperature, canning, freezing, #dehydration#, drying and radiation. Chemical- Class I and Class II preservatives. Microbial examination of food - viable count and Examination of faecal streptococci.

UNIT IV

Microorganisms in Milk and Milk Products: koumiss, kefir, butter and cheese, Microbiological analysis of milk: Rapid platform tests - organoleptic, Clot on boiling (COB), titratable acidity, alcohol test, DMC, sedimentation test and pH, #Standard plate count#, Dye reduction test - MBRT, Resazurin test. Methods of preservation of milk and milk products: Pasteurization, sterilization, dehydration.

UNIT V

Microbiological Aspects of Quality Control: Quality assurance in production of milk and milk products – Good Manufacturing Practices (GMP) and Sanitary Standard Operating Procedure (SSOP), #Importance of Total Quality Management (TQM) in dairy industry. Application of HACCP Programme in dairy industry, Safety concerns of bio-film formation on equipment surfaces and their control measures.

15 Hours

15 Hours

15 Hours

15 Hours

Textbooks:

T.B-1 Frazier, W.C, Westhoff, D.C. Food Microbiology, TATA Mc Graw Hill, 1988. **T.B-2** Adams, M.R. and Moss M.O. Food Microbiology, The Royal Society of Chemistry, Cambridge, 1995.

T.B-3 Banwart ,G.J. Basic food microbiology, Chapman & Hall, New York, 1989.

UNIT I	Chapter I	T.B-1
UNIT IV	Chapter IX	T.B- 2
UNIT V	Chapter VII	T.B-3

Books for reference:

1.Baumberg. S., Hunter. I.S. and Rhodes, P.M. Microbial Products -New approaches. Cambridge Univ. Press. Cambridge, 1989.

2. Robinson, R.K. Dairy Microbiology, Elsevier, 1990.

Web Source:

1.<u>https://www.canr.msu.edu/smprv/uploads/files/Safe_Practices_for_Food_Processes_Chpt._3_</u> Factors_that_Influence_Microbial_Growth.pdf

2. https://www.thespruceeats.com/food-poisoning-and-food-spoilage-996015

3.https://courses.lumenlearning.com/boundless-microbiology/chapter/food-preservation/

4.http://ecoursesonline.iasri.res.in/mod/page/view.php?id=65153

5. https://academicjournals.org/journal/IJLP/article-full-text-pdf/56F586B56464

Semester	C	ode		Tit	le of the I	Paper		Hour	S	Credits
VI	20UM	B5CC1	3		DAIRY DGY		5		5	
Course		Progr	amme O	outcomes		Р	rogramn	ne Specific	Outcom	ies
Outcome			(POs))				(PSOs)		
s (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO 2	PSO3	PSO 4	PSO5
CO1	~	~	~			~		\checkmark		\checkmark
CO2	~		~			~		\checkmark	~	
CO3	~		~		~	~	~	\checkmark	~	
CO4	~	~	~	\checkmark	✓	~	~	\checkmark	~	\checkmark
CO5	~	~	~	\checkmark	~	~	~	\checkmark	~	\checkmark
	1	N	umber o	f Matche	es= 38, R	elationshi	p:HIC	GH	I	
Prenare	d hv						Checke	d by		

Relationship Matrix for Course Outcomes, Programme Outcomes and ProgrammeSpecific **Outcomes:**

Prepared by:

Checked by:

1. Dr. N. Packialakshmi

K.Vijayalakshmi
 Dr. J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50

Semester	Code	Course	Title of the course	Hours	Credits	Max. Marks	Internal Marks	External Marks
VI	20UMB6CC14	Core XIV	ENVIRONMENTAL MICROBIOLOGY	5	5	100	25	75

Course Outcomes

At the end of the course, students will be able to

- 1. Describe the vital role and application of microbes invarious ecosystems.
- 2. Identify the airborne microorganism and air sampling techniques.
- 3. Apply the mechanism used in water purification techniques.
- 4. Explain the working principles of sewage treatment.
- 5. Examine the process of bioleaching and treatment of waste materials.

UNIT I

Introduction to Microbial Ecosystems: Structure of natural environment: Ecosystem types-Natural-Terrestrial ecosystem, Forest ecosystem, Grassland ecosystem, Desert ecosystem, Tundra ecosystem, Freshwater ecosystem and Marine ecosystem. Artificial- Aquariums, crop fields, dams, gardens. Conventional and molecular methods of studying microbial diversity.

UNIT II

Microbiology of air: Source of Microorganism in air- airborne microorganism- # airborne diseases # - Enumeration of bacteria from air- Air sampling methods- impingement, impaction, centrifugation, filtration and deposition - Air sanitation.

UNIT III

Microbiology of water: Bacteriological analysis of water- MPN Technique- Eutrophicationwater purification – natural- storage, oxidation and settlement- artificial- physical, chemical and filtration- #water borne disease and their control measures#.

UNIT IV

Treatment of Waste: Liquid waste-Chemical and biochemical characteristics of sewage – BOD and COD– Sewage Treatment – Physical, Chemical and Biological (trickling filter, activated sludge and# oxidation pond #) treatment- Solid Waste- Composting.

UNIT V

Biodegradation: stages of biodegradation- biodeterioration, bio fragmentation and assimilation. #Biomining#. Biodegradation of Plastics, Microbial leaching- Copper and Uranium. Bioconversion of cellulose to ethanol. Application of geographic information system (GIS) in environmental monitoring.

Self-study portion

15 Hours

15 Hours

15 Hours

15 Hours

Text Books:

T. B- 1 Atlas R.M and Bartha, R. Microbial Ecology Fundamentals and Application (4th edition)- LPE, pearson Education.Inc, 2005.

T.B-2 Alexander, M. Microbial Ecology. John Wiley and Sons Inc, New York, 1971.

T.B- 3 Forster, C.F. Biotechnology and Wastewater Treatment. Cambridge University Press. Cambridge, 1985.

UNIT I	Chapter III	T.B-1
UNIT II	Chapter V	T.B-1
UNIT III	Chapter IV	T.B-2
UNIT IV	Chapter V	T.B-3
UNIT V	Chapter XII	T.B-3

Books for reference:

1. Grant W.D. and Long P.L. Environmental Microbiology. Blackie Glasgow. London, 1981.

2. Marshall, K.C. Advances in Microbial Ecology. Vol.8, Plenum press, 1985.

Web Source:

1.https://www.healthline.com/health/airborne-diseases#types

- 2.https://www.americangeosciences.org/critical-issues/faq/what-biomining
- 3.https://microbeonline.com/probable-number-mpn-test-principle-procedure-results/

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific

Outcomes:

Semester		Code		Т	Title of th	e Paper		Hours		Credits
VI	20U I	MB6CC1	4			MENTAL IOLOGY		5		5
Course Outcomes		Progra	mme O (POs)	ogramme	Specific (PSOs)	e Outco	omes			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO ₄	4 PSO5
CO1	~	\checkmark	~			~	~	\checkmark		
CO2	~	\checkmark	~			~	~	~	,	
CO3		\checkmark	~				\checkmark	\checkmark		
CO4	~	√	~		✓	~	~	~		~
CO5		√	~	(✓		~	~		~
	Number of Matches= 32 Relationship :Moderate									
Prepared by	:							Checke	d by:	

Dr. H. VajihaBanu

1. Dr.N.Packialakshmi 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the course	Hours	Credits	Max. Marks	Internal Marks	External Marks
VI	20UMB6CC15	Core XV	SOIL AND AGRICULTURAL MICROBIOLOGY	5	5	100	25	75

Course outcome:

At the end of the course, students will be able to

1.Describe the distribution and association of microorganisms in various types of soil.

2. Identify the role of microbes and nutrient cycles prevailing in environment.

3.Acquire the knowledge on interaction of microbes with various regions.

4.Examine the plant diseases and their control methods.

5.Describe the production and applications of bioinoculants.

UNIT I

Introduction to soil Microbiology: Layers of Soil. Physical Properties of Soil - color, texture, structure, porosity, density, consistence, aggregate stability, and temperature . Chemical Properties of soil- Heavy metal, pH, carbon, nitrogen, calcium (Ca), magnesium (Mg) and potassium (K) and phosphorous (P). Micro flora of various soil types. Significance of soil microbes – bacteria, fungi, algae, protozoa, nematodes, actinobacteria, viruses #Factors affecting microbial population #.

UNIT II

Biogeochemical Cycles: Carbon cycle, #Phosphorous cycle#, Nitrogen cycle and Sulphur cycle. Biological Nitrogen fixation- Symbiotic and Non symbiotic – nitrogen fixer, root nodule formation, Nitrogenase and Hydrogenase.

UNIT III

Microbial interaction: Neutralism, Commensalism, Synergism, Mutualism, Amensalism, Competition, Parasitism, Predation. Interaction of microbes with plants – Rhizosphere, Phyllosphere, Spermosphere, Mycorrhizae. Rumen flora. Insect symbiosis.

UNIT IV

Plant diseases: Bacterial disease – Citrus canker - Fungal disease – Rust of Wheat, Tikka leaf spot of ground nut, # Blast of Rice#- Red rot of sugar cane .Viral disease –Cauliflower mosaic, Vein clearing disease of Bhendi (*Abelmoschus esculentus*).

UNIT V

Plant growth promoting bacteria: Plant growth promoting Rhizobacteria - # Disease suppressive soils # - Bioinoculants in Agriculture, Application technology: Standards and quality control, application for field and tree crops, nursery plants and seedlings.

Self-study portion

15 Hours

15 Hours

15 Hours

15 Hours

Text Books

T.B-1 Atlas, R.I.M. Microbiology fundamentals and applications. Mac. Millan Publishing Co, 1989.

T.B-2 Agrios, G.N. Plant Pathology (2nd edition). Academic Press NY, 1978.

T.B – **3** Dirk J, Elas V, Trevors JT, Wellington, EMH. Modern Soil Microbiology. Marcel Dekker INC, New York, Hong Kong, 1997.

T.B- 4 Rangaswami, G. and D.J. Bhagyaraj, 2001. Agricultural Microbiology. 2nd Edition. Prentice, Hall, New Delhi.

UNIT I	Chapter XXVII	T.B-1
UNIT II	Chapter XXXI	T.B-1
UNIT III	Chapter IV	T.B-2
UNIT IV	Chapter VII	T.B- 2
UNIT V	Chapter XII	T.B 3 & 4

Books for reference

- 1. Ainsworth, G.C. Introduction to the history of plant pathology Cambridge, Univ. 1981. Press, Cambridge.
- 2. Prescott, L.M, Harley, J.P, Klein, D.A. Microbiology, WCB Mc Graw Hill, 1999.

Web Source:

1. https://www.britannica.com/science/Bacillus-thuringiensis

2. https://vikaspedia.in/agriculture/agri-inputs/bio-inputs/bioinputs-for-nutrient-

management/biofertilizers

3.https://www.britannica.com/science/soil/Soil-behaviour

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		Ti	tle of the	Paper		Hours	5	Credits		
VI	20U	MB6CC1	15	SOIL AN MI	ID AGRI CROBIO		RAL	5		5		
Course Outcomes		Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	~	\checkmark			~	~	~	~	~	· · ·		
CO2	~				~	~	~	~		~		
CO3	~	√				~	~	~		~		
CO4	~	\checkmark				~	~	✓	~			
CO5	~	✓		 ✓ ✓ 		~		~	~	✓		
	II	Nu	mber o	of Matches	= 39 Rel	lationship	:High	1	1	1		

Prepared by:

Dr. H. VajihaBanu

Checked by:

Dr.N.Reehana
 Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
VI	20UMB6CC16P	Core XVI	FOOD AND DAIRY TECHNOLOGY, ENVIRONMENTAL MICROBIOLOGY, SOIL AND AGRICULTURAL MICROBIOLOGY - PRACTICAL	5	5	100	20	80

Course outcomes:

At the end of the course, students will be able to

- 1. Examine the quality of Milk by Methylene blue reduction test.
- 2. Detect the food borne pathogens from various sample.
- 3. Describe the antagonistic effect of microbes.
- 4. Isolate the microorganisms from soil, air and plant root.
- 5. Predict the knowledge on algae as indicator of water pollution.

List of Practicals

- 1. Assessment of milk quality by Methylene Blue Reduction Test.
- 2. Detection of food borne pathogens from spoiled tomato and Bread.
- 3. Water portability test Standard Plate Count (SPC).
- 4. Isolation and counting of faecal bacteria from water
- 5. Algae as indicators of water pollution
- 6. Isolation and staining of AM fungi colonization in plant root.
- 7. Isolation and culturing of *Rhizobium* from root nodules.
- 8. Isolation and testing of antagonistic microorganisms from soil.
- 9. Isolation of microorganisms from Rhizosphere and phyllosphere.
- 10. Microbial assessments of air quality open plate method
- 11. Effect of high salt concentration on microbial growth.
- 12. Oligodynamic action of heavy metals on bacteria.

Practical manual

- ^{1.} Aneja, KR. Experiments in Microbiology, Plant pathology and Biochemistry (4th Edition). New age International publishers, India 2003.
- Cappuccino and James, G. Microbiology a laboratory manual (4th edition). Addison Wesley Publishing Company Inc., England, California. 1996.

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific

Outcomes:

Semester		Code		Tit	tle of the	Paper		Hours	s (Credits	
VI	20UN	1B6CC1	6 P I	TI ENV MICROE AG MIC	OD AND ECHNOL VIRONM BIOLOGY RICULT CROBIOI PRACTIO	OGY, ENTAL 7, SOIL AND URAL LOGY - CAL		5		5	
Course		Progra	mme Ou	tcomes		Programme Specific Outcomes					
Outcomes			(Pos)			(PSOs)					
(Cos)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1		√	~			~	~	~	~		
CO2	~	✓	~			~	~	~	~		
CO3	~	✓				~	~	~			
CO4		✓	~			✓	~	~	~		
CO5		✓	~			✓	~	~		✓	
		Num	ber of M	atches= (30 Relati	ionship :	:Moderat	e			

Prepared by:

Checked by:

Dr. H. VajihaBanu

A.Fasila Begum
 Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
VI	20UMB6DE2 A	DSE II	PLANT PATHOLOGY	5	4	100	25	75

Course Outcomes:

At the end of the course, students will be able to

- 1. Acquire the knowledge on economic losses and social impact of plant disease.
- 2. Explore the knowledge on polycyclic and polyetic diseases.
- 3. Describe the Virulence factors of pathogens.
- 4. Determine the comprehensive knowledge eon concept of resistance.
- 5. Analyze the basic principles of the disease management.

UNIT I

Concept of Plant Disease: Definitions of disease, disease cycle and pathogenicity, symptoms associated with microbial plant diseases, types of plant pathogens, #economic losses and social impact of plant diseases#. Significant contributions by scientists in the field of plant pathology.

UNIT II

Concept of Epidemics: Infection, invasion, colonization, dissemination of pathogens and perennation. Concepts of monocyclic, polycyclic and polyetic diseases, #disease triangle# and disease pyramid, forecasting of plant diseases and its relevance in Indian context.

UNIT III

Virulence Factors of Pathogens: enzymes, toxins (host specific and nonspecific) growth regulators, virulence factors in viruses (replicase, coat protein, silencing suppressors) in disease development. Effects of pathogens on host physiological processes - photosynthesis, respiration, cell membrane permeability, #translocation of water and nutrients#, plant growth and reproduction.

UNIT IV

Disease Resistance: Concept of resistance (r) gene and avirulence (avr) gene, gene for gene hypothesis, types of plant resistance – Concepts of constitutive defense mechanisms in plants, inducible structural defenses - inducible biochemical defenses hypersensitive response (HR), #systemic acquired resistance (SAR)#, phytoalexins, pathogenesis related (PR) proteins, plantibodies, phenolics, quinones, oxidative bursts.

UNIT V

Basic Principles of the Disease Management: Study of important plant diseases with emphasis on its etiological agent, symptoms, epidemiology, life cycle and management: fungal diseases diseases of phytopathogenic bacteria –# phytoplasmas# – viruses and viroids.

Self-study portion

15 Hours

15 Hours

15 Hours

15 Hours

Text Books: T.B-1 Dube H.C. Modern Plant Pathology, Agrobios (India), 2010. **T.B-2** Ravichandra N.G. Fundamentals of Plant Pathology, PHI Learning Pvt Ltd, 2013.

UNIT I	Chapter I &II	T.B-1
UNIT II	Chapter II	T.B- 1
UNIT III	Chapter XIV	T.B-1
UNIT IV	Chapter XV	T.B- 1
UNIT V	Chapter X	T.B-2

Books for Reference:

1. Vidhyasekaran P. Concise Encyclopedia of Plant Pathology. CRC Press, 2004.

2. Sharma J.N., Karthikeyan G. and Sh. Mohinder Singh Fundamentals of Plant pathology. ICAR E-course,2007.

3. Agrios G.N. Plant Pathology, 5thEdn. Elsevier Academic Press.2005.

Web Source:

- 1. https://www.britannica.com/science/plant-disease
- 2. <u>https://www.apsnet.org/edcenter/disimpactmngmnt/topc/EpidemiologyTemporal/Pages/Disea</u> <u>se%20Progress.aspx</u>
- 3. <u>https://www.botanylibrary.com/plant-pathogens/effects-of-pathogens-on-photosynthesis-botany/15606</u>
- 4. http://www.eagri.org/eagri50/ENTO232/lec16.pdf
- 5. <u>http://ecoursesonline.iasri.res.in/mod/page/view.php?id=11417</u>

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcome:

Semester	(Code		Ti	tle of the l	Paper		Hours	C	redits			
VI	20UM	B6DE2	2A	PLAN	NT PATH	OLOGY		5		4			
Course		Prog	amme (Outcomes	5	Programme Specific Outcomes							
Outcomes		(POs)					(PSOs)						
(COs)	PO1	PO1 PO2 PO3 PO4 PO5					PSO 2	PSO3	PSO 4	PSO5			
CO1	~	~	~		~	~		✓		\checkmark			
CO2	~	~	~			~	~	~	~				
CO3	~	~	~			~	~	~	~				
CO4	~		~		~	~	~	~	~				
CO5	~	~	~		\checkmark	~	~	~	~				
	I	N	Jumber	of Match	es= 36, R	elationshi	p : Hig	gh	1				

Prepared by:

Dr. N. Packialakshmi

Checked by:

1. Dr.N.Reehana

2. Dr. J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External marks
VI	20UMB6DE2B	DSE II	APPLIED PHYCOLOGY	5	4	100	25	75

Course Outcomes:

At the end of the course, students will be able to

- 1. Acquire the knowledge on ultra structure of prokaryotic and eukaryotic algal cells.
- 2. Explore the knowledge on Vegetative reproduction in algae.
- 3. Examine the collection and preservation of algal samples.
- 4. Describe the economic importance of Algae.
- 5. Analyze the Environmental effects on algae.

UNIT I

Introduction to Algae: Definition- Distribution of algae- #Classification of Algae#- Important features - Ultrastructure of prokaryotic and eukaryotic algal cells. Thallus organization among algae: Unicellular, colonial, filamentous, siphonous and parenchymatous thallus organizations with examples- pigment and reserve food material.

UNIT II

Vegetative reproduction in algae: Binary cell division, autocolony formation, fragmentation, Hormogones, hormocysts, planococcus, propagules, bulbils and adventitious branches. # Asexual and Sexual reproduction of algae#. Life cycles in algae: Zygotic, gametic, sporic (biphasic). Sporic (triphasic) and somatic life cycles.

Unit III

Collection and preservation of algal samples: Isolation, purification and maintenance of cultures. #Mass culturing methods: open and closed culture system# - Various cell harvesting strategies: centrifugation – sedimentation – flocculation – floatation – filtration methods.

UNIT IV

Economic importance of Algae: Primary producers – Algae as Food –Algae as source of Iodine - Pharmaceuticals and nutraceuticals - Phytohormone production: Auxins - Cytokinins -#Gibberellins#- Biofertilizers - Biofuel production: biodiesel - biohydrogen - bioethanol biobutanol. Algae in sewage treatment.

UNIT V

Environmental effects of algae: CO₂ mitigation and sequestration – hydrocarbon degradation – heavy metal biosorption - #Harmful algal blooms# - phycotoxins - toxic effect to aquatic organisms and its application in biomedical field.

Self-study portion.

15 Hours

15 Hours

15 Hours

15 Hours

Text Books:

T.B-1 Barsanti, Laura and Paolo Gualtieri. Algae-Anatomy, Biochemistry and Biotechnology. Taylor & Francis, London, New York . 2005.
T.B-2 South, G.R. and A. Whittick. Introduction to Phycology. Blackwell Scientific Publications, Oxford.1987.

UNIT I	Chapter I	T.B-1
UNIT II	Chapter II	T.B-1
UNIT III	Chapter V & VI	T.B-2
UNIT IV	Chapter VII & XI	T.B- 2
UNIT V	Chapter XI	T.B-2

Books for Reference:

1. Lobban, C.S. and M.J. Wynne (Eds.) The Biology of Seaweeds. Blackwell Scientific Publications, Oxford.

2. Fritsch, F.E. 1945 Structure and Reproduction of Algae, Vol. II, Cambridge University Press, Cambridge.

Web Source:

1. <u>https://istudy.pk/algae-cell-structure/</u>

 $2. \underline{https://www.biologydiscussion.com/algae/reproduction-algae/reproduction-in-algae-botany/53445}$

3.https://courses.botany.wisc.edu/botany_330/preservation.html

4. https://www.biologydiscussion.com/algae/economic-importance-of-algae-botany-2/57866

5.<u>https://www.cdc.gov/habs/environment.html</u>

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		Т	itle of the	Paper		Hour	S	Credits
VI	20U N	MB6DE	2B	APPI	JED PHY	COLOG	Y	4		
Course		Progra	amme ((POs	Dutcomes		P	rogramn	ne Specific (PSOs)	es	
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO 2	PSO3	PSO 4	PSO5
CO1	~	\checkmark				~	~	✓		✓
CO2	\checkmark	\checkmark				\checkmark	~	\checkmark		~
CO3	~	\checkmark	\checkmark	\checkmark	\checkmark	~	~	\checkmark	~	\checkmark
CO4	~	~		\checkmark		~				\checkmark
CO5	~	\checkmark	\checkmark			~	~	\checkmark	~	\checkmark
		Nı	umber o	of Matche	es= 35, Re	lationship) : HIG	Н		

Prepared by:

Dr. N. Packialakshmi

Checked by:

1. A.Fasila Begum 2. Dr. J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External marks
VI	20UMB6DE3A	DSE-III	SOCIAL AND PREVENTIVE MEDICINE	4	4	100	25	75

Course outcomes:

At the end of the course, students will be able to

1. Acquire the knowledge on basic concepts of medicine, health and diseases.

- 2. Explain the principles and methods of Epidemiology
- 3. Determine the disease transmission, diagnosis, and prevention of diseases.
- 4. Describe the genetic diseases and methods of health management.
- 5. Acquire the knowledge on mental health and its preventive measures.

UNIT I

Man and Medicine: Medicine in antiquity- Dawn of scientific medicine- Modern medicine-Indian Medicine - Siddha, Ayurvedic, Unani, Naturopathy and Yoga .Self Medication-Medical revolution- Concepts of health and disease – Dimensions of health-[#] International Classification of Diseases #.

UNIT II

Epidemiology Principles and Methods: Aim and approach, measurement in epidemiologymortality measurement, morbidity measurement, incidence and prevalence. Epidemiologic methods- descriptive and experimental epidemiology. #Association and causation#. Use of epidemiology.

UNIT III

Introduction to Infectious Disease: General mechanism of disease cycle, disease transmissionhuman, animal and reservoir in nonliving things- indirect transmission- vehicle borne, vector borne, air borne & fomite borne. [#]Disease prevention and control[#].

UNIT IV

Genetics and Health Management: Genetic Diseases - , Role of genetic predisposition in common disorders - preventive and social measure. Health planning - #Planning cycle# and Health management – Management method and Techniques.

UNIT V

Mental Health: History-problem statement. Characteristics of mentally health person-Warning signals of poor mental health-Types of mental illness-Causes of mental ill health-Crucial points in the Life cycle of human beings- #Preventive Aspects# -Mental health services. ## Self-study portion

12 Hours

12 Hours

12 Hours

12 Hours

Text Books:

T.B-1 Park, K. Text book of preventive and social medicine, M/s. BanarsidasBhanot Publishers, Jabalpur, India.

Books for Reference:

- 1. Scigerist henry, 1951. A History of medicine, Vol. Oxford university press, London.
- 2. Ahmed, P. I and Coelho, G.V.1979.Toward a new Definition of Health, Pleum, New Yark.
- 3. Roht, L.H.1982. Principles of epidemiology, a self teaching guide .London academic press.
- 4. Lilienfeld, A.M. and Lilienfeld, D.E.1980.Foundations of epidemiology, (2nd edition). Oxford University.

UNIT I	Chapter I	T.B- 1
UNIT II	Chapter III	T.B-1
UNIT III	Chapter IV	T.B- 1
UNIT IV	Chapter V	T.B- 1
UNIT V	Chapter VIII	T.B- 1

Web Source :

1.https://www.slideshare.net/tusharkedar2/indigenous-system-of-medicine

2.https://www.slideshare.net/RAJEEVK2010/5principles-and-methods-of-epidemiology

3.https://www.medicinenet.com/genetic_disease/article.htm

4.https://www.betterhealth.vic.gov.au/health/ServicesAndSupport/types-of-mental-health-issuesand-illnesses

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		Ti	tle of the	Paper		Hours	s	Credits	
VI	20UN	MB6DE3	BA		AND PR MEDIC	REVENTIVE 4				4	
Course Outcomes		Progra	imme C (POs)))	Pr	Programme Specific Outcomes (PSOs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	~	√	v	(~	~	~		~	
CO2	~	√	v			~	~	~	~		
CO3		\checkmark	×			~	~	~	~	✓	
CO4	~	\checkmark	×			~	~	~	~	✓ ✓	
CO5	~									~	
		Num	ber of l	Matches=	31 Relat	ionship :	Modera	te	1		

Prepared by:

Dr. H. VajihaBanu

Note:

Checked by:

K.Vijayalakshmi
 Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max.	Internal	External
Semester	Coue	Course Title of the Course Hours		110015	Creans	marks	Marks	marks
		BIOSAFETY AND						
X 7 X		DSE-III	INTELLECTUAL 4		4	100	25	75
VI	VI 20UMB6DE3B		PROPERTY				25	
			RIGHTS					

Course Outcomes:

At the end of the course, students will be able to

1. Acquire the knowledge on Biosafety and Biohazard management.

2. Predict the knowledge on genetically modified organisms relevant to Biosafety guidelines and regulations.

3. Apply the ethical approaches during animal research.

4. Describe the knowledge on IPR and its regulation.

5. Acquire the knowledge on patent, types, guidelines and applications.

UNIT I

Biosafety: Good laboratory practices. Risk and safety assessment from genetically engineered organisms. Special procedures for r-DNA based products; biological containment (BC) and physical containment (PC); #Biological Safety Cabinets and their types#. Biohazard management.

UNIT II

Biosafety Guidelines: Biosafety guidelines and regulations (National and International); GMOs/LMOs- Concerns and Challenges; Role of Institutional Biosafety Committees (IBSC), for GMO applications in food and agriculture; #Environmental release of GMOs#; Risk Analysis; Risk Assessment; Risk management and communication.

UNIT III

Bioethics: Ethical considerations during research; animal testing; xenotransplantation; Embryonic and adult stem cell research. #Informed Consent#, Independent Ethics Committee, Constitution of institutional ethics committee, Conflicts of Interest.

UNIT IV

Intellectual Property Rights (IPRs): Concepts of IPR; Types of IP: #patents#; Trademarks, copyright & related rights, industrial design, traditional knowledge, geographical indications. Plagiarism and open access publishing. World Intellectual Property Rights Organization (WIPO).

UNIT V

Patenting: Basics of Patents. Patent application - forms and guidelines. Patent filing in India and abroad. Filing of a patent application. Patent Co-operation Treaty (PCT); #Gene patent#, Patenting of Living Organisms.

##Self-study portion.

12 Hours

12 Hours

12 Hours

12 Hours

Text Books:

T. B-1. Fleming, D.O. and Hunt, D.L. Biological Safety: Principles and Practices. American Society for Microbiology, USA. 2006.

T. B-2. Shannon, T.A. An Introduction to Bioethics. Paulist Press, USA.2009.

T. B-3. Vaughn, L. Bioethics: Principles, Issues, and Cases. Oxford University Press, UK. 2009.

T. B-4. Singh K K (2015). Biotechnology and Intellectual Property Rights: Legal and Social Implications, Springer India.

T. B-5.Goel D and Prashar S. IPR, Biosafety and Bioethics. Pearson.2013.

UNIT I	Chapter II	T.B-1
UNIT II	Chapter IV	T.B-5
UNIT III	Chapter XXV	T.B-3
UNIT IV	Chapter XIX	T.B-2
UNIT V	Chapter VII	T.B-4

Books for Reference:

- 1. WHO. Laboratory Biosafety Manual. World Health Organization.2005
- 2. Bare Act, Indian Patent Act 1970 Acts & Rules, Universal Law Publishing Co. Pvt. Ltd., New Delhi.2007.
- 3. P Ganguly, Intellectual Property Rights, Tata McGraw Hill, 2007.

Web Source:

1. https://www.sciencedirect.com/topics/earth-and-planetary-sciences/biosafety

2. https://www.sciencedirect.com/topics/agricultural-and-

biological sciences/intellectuaproperty-rights.

3.<u>https://www.niehs.nih.gov/research/resources/bioethics/index.c</u>

<u>fm</u>

Relationship	Matrix	for	Course	Outcomes,	Programme	Outcomes	and
Programme S	pecific O	utcor	nes:				

Semester	(Code		Title of the Paper					Hours		Credits
VI	20UM	IB6DE3I	3 I	BIOSAFE PR	TY AND			L		4	4
Course Outcomes		Programme Outcomes Progra (POs)								ic les (PSC) C
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2		503	PSO4	,
CO1	~	~	~	 ✓ 	✓	 ✓ 	~		✓	~	✓
CO2	~		~	✓ ✓	~				✓	~	✓
CO3	~	~				✓	~				
CO4			~	 ✓ 	✓	✓			✓	~	✓
CO5	~			✓		✓				✓	✓
	<u> </u>	Nu	imber (of Matche	s= 34,Re	lationship	: High				

Prepared by: Dr.P.Sivalingsam Checked by: 1. Dr.Dr.M.Mohamed Mahroop Raja 2.Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. marks	Internal marks	External Marks
VI	20UMB6EC2	EC - II	MICROBIOLOGY FOR COMPETITIVE	-	4*	100	_	100
			EXAMINATIONS					

Course Outcomes:

At the end of the course, students will be able to

- 1. Describe the evolution, contribution scope and human health of Microorganisms.
- 2. Illustrate the properties, structure and classification of prokaryotes, Eukaryotes and Viruses.
- 3. Explain the chemistry of microbial growth and its measurements.
- 4. Acquire the knowledge on nucleic acids and its application in genetic engineering.
- 5. Determine the role of microbes in various fields.

UNIT I

Introductory Microbiology: History of Microbiology, Origin and evolution of life. Contribution of Pioneers with special reference to Leeuwenhoek, Pasteur, Jenner and Koch. Scope of Microbiology- Microbiology of human health (short description of causal agent, pathogenesis and diagnosis of Typhoid, Cholera, Influenza, Herpes, Malaria and Ringworm). Beneficial and harmful Microbes.

UNIT II

Prokaryotic and Eukaryotic cell: Classification of bacteria: phylogenetic and phenetic classification, numerical taxonomy, Hierarchical taxa, Nomenclature and taxonomy of bacteria. Characteristics of Cyanobacteria and Archaebacteria. General properties of virus- ICTV-scheme for viral classification based on genome, morphology and host properties, identification of Viruses- bacteriophages- structure, replication and transmission.

UNIT III

Biochemistry of Microbes: Chemical elements, Structure of atoms, Molecules and chemical bonds, Chemical reactions, Molecules of living systems. Concepts and types of thermodynamics-Enthalpy, Entropy, Gibb's free energy. Microbial growth and multiplication- Growth curve and kinetics of bacteria, nutritional requirements, culture media, factors affecting growth; Physical and chemical measurement of Microbial growth. Chemostat and turbidostat.

UNIT IV

Genetic and Nucleic acid: Mendelian principles-Dominance, segregation, independent assortment, allele and multiple alleles. Types, structure and function- Plasmids and Transposons. DNA Types and structure- A, B and Z. RNA types and structure - mRNA, tRNA and rRNA. Restriction endonucleases - types, properties and uses. Cloning- Gene cloning and cloning vectors and Genomic libraries. PCR- types, functions, Sequencing, DNA finger and foot printing. Applications of genetic engineering- Bt cotton, Insulin production, Somatotrophin and vaccine production.

UNIT V

Application of microbiology: Role of microbes in preparation of Sauerkraut, bread and pickles. Microbes as food- Single cell protein and Mushroom production. Symbiotic and non-symbiotic biofertilizer production. Microbiology of milk- Preservation of milk and milk products. Production of fermented dairy Products-Acidophilus milk, cheese and yogurt. Industrial production of organic acid (Lactic acid), Enzymes (Amylase), Alcohol (Ethanol), Antibiotics (Penicillin).

##Self-study portion.

Text Books:

T.B-1. Lansing, M. Prescott, John P.Harley and Donald A.Klein. 2011. Microbiology, 8th edn McGraw Hill Publishing company Ltd.(2011).

T.B-2. Principles of Biochemistry – Lehninger – CBS Publishers.

T.B-3. S.S. Purohit, Microbiology- Fundamentals and Applications, 7th Edition, Agrobios (India) Jodhpur, 2008.

T.B-4. R.C. Dubey and D.K Maheswari, A Textbook of Microbiology (Revised edition), S. Chand and Company Ltd, New Delhi, 2012.

UNIT I	Chapter I	T.B-1
UNIT II	Chapter IV & XV	T.B-4
UNIT III	Chapter X & V	T.B-2
UNIT IV	Chapter IX	T.B-3
UNIT V	Chapter XX	T.B-4

Books for Reference:

1.Michael J. Pelczar, Jr. E.C.S. Chan, Noel R.Krieg, Microbiology, 5thedition, Tata McGraw-Hill Publishing Company Limited, New Delhi, 2006.

2.David L. Nelson and Michael M.Cox, Lehniger Principles of Biochemistry, 4th Edition, W.H. Freeman and Company, New York, 2005.

3.Old, R.W and Primbrose S.B. Principles of gene manipulation-An introduction to genetic engineering. 5th edition. Blackwell scientific publications. London. (1995).

4.Jeffrey C.Pommerville, Alcamo's Fundamentals of Microbiology, 9th edition,

Jones and Bartlett publishers, Massachusetts, 2011.

5. Eric E. Conn, Paul K. Stumpf, George Bruening and Roy H. Doi, Outlines of Biochemistry, 5thEdtion, John Wiley and Sons, New Delhi, 2006.

Web Source:

- 1. https://ncert.nic.in/textbook/pdf/hesc102.pdf
- 2. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118960608.cbm00019
- 3. <u>https://www.khanacademy.org/science/chemistry/thermodynamics-chemistry/gibbs-free-energy/a/gibbs-free-energy-and-spontaneity</u>

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester	r Code			Title of the Paper				Hours	C	Credits	
VI	20U	MB6EC	² C	MICROBIOLOGY FOR COMPETITIVE EXAMINATIONS			-		4*		
Course Outcomes	Programme Outcomes (POs) Programme Specific Outcome						comes (P	SOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	~		✓	~	✓	√		✓	~	✓	
CO2	~	~	\checkmark			√	 ✓ 	✓			
CO3	~	\checkmark	\checkmark		\checkmark	✓	✓	✓		~	
CO4	~	\checkmark	\checkmark		✓	✓	✓	√		✓	
CO5	~	~	\checkmark	\checkmark		√	~	✓	~		
Number of Matches= 38, Relationship : High											

Prepared by:

Checked by:

Dr.H.Vajiha Banu

1.A.Fasila Begum
 2. Dr.J.Sirajudeen

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high