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Introduction  

 This booklet is the brain child of motivated Maths students & Scholars who wish to 

disseminate mathematical information regarding the reputed Mathematical Institutions, 

current events, unsolved problems, Millennium prize problems, puzzles, solutions etc.,     
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The even integers as sums of two primes 

Can every even number greater than 2 be 
written as the sum of two primes? The affirmative 
answer to this question is known as Goldbach’s 
conjecture since it was suggested by the Prussian 
mathematician Christian Goldbach in 
correspondence with Euler in 1742. (Goldbach’s 
formulation of the conjecture was slightly different 
because he considered 1 to be a prime number, a 
convention that was common throughout the 18th 
and 19th centuries.) This is one of the most famous 
unsolved problems in mathematics, its acclaim 
being due in large part to two important 
characteristics – the problem is easy to state and 
understand, and it has remained unsolved for a 
very long time. Incidentally, it is also the subject of 
a 1992 novel, Uncle Petros and Goldbach’s Conjecture, 
by Apostolos Doxiadis, which first appeared in 
English in 2000 along with an offer from the 
publishers to award a prize of one million dollars 
to anyone who could prove the conjecture within 
two years. 
 

The conjecture has been checked 
numerically for all even numbers less than 1018 and 
in 1973 Chen Jingrun proved that all sufficiently 
large even numbers can be written as the sum of a 
prime and a number with at most two prime 
factors. It is also known that the number of even 
numbers which cannot be written as the sum of 
two primes is very small (it has density zero 
among the integers). But there is still a chasm to fill 
between these results to establish the conjecture 
and Faber and Faber were no doubt pretty 
confident that their money was safe. 

If Goldbach’s conjecture is assumed true, 
then it follows that all odd numbers greater than 5 
are the sum of three primes since the odd number 
can be written as 3 plus an even number greater 
than 2. This result is known as the ternary 
Goldbach conjecture, though the term conjecture 
can now be dropped since it was proved earlier 
this year. Unfortunately, the ternary result does 
not imply the original conjecture. If we take an odd 
number written as the sum of three primes and 
subtract one of the odd primes from it we will 
certainly get an expression for an even number as 
the sum of two primes, but there is no guarantee 
that all even numbers can be expressed in this way. 
The ternary result does lead to an improved result 
on the main conjecture, however, as it can be 
shown to imply that all even numbers are the sum 
of at most 4 primes. 

The credit for the proof of the ternary 
conjecture goes to the Peruvian mathematician 
Harald Helfgott, though as with the resolution of 

many other long-standing unsolved problems, 
Helfgott has supplied the final piece in a jigsaw 
which was begun some time ago and which has 
involved many great minds. In fact Vinogradov 
showed in 1937, using a technique called the circle 
method due to Hardy and Littlewood, that all 
sufficiently large odd numbers can be written as 
the sum of three primes, or in other words that 
there can only be a finite number of odd numbers 
that cannot be expressed in this way, the only issue 
since that time has been to derive a number N 
above which the ternary conjecture holds and 
which is small enough to allow direct checking via 
computer for all numbers less than N. 

 
  
Some key milestones in the story are N = 107,000,000, a 
figure arrived at by Vinogradov’s student 
Borozdin in 1956, N = 101346 achieved by Liu Ming-
Chit and Wang Tian-Ze in 2002 (it is perhaps 
worth noting here that the number of atoms in the 
observableuniverse is estimated to be roughly 
1080), and now Helfgott has reduced N to 1029. 
Working with David Platt from the University of 
Bristol, Helfgott subsequently confirmed the 
conjecture numerically for all odd numbers less 
than this. I am not sure if anyone has checked the 
calculations, but all the chatter on the internet 
seems to suggest that there is a high degree of 
confidence in the result. 
 

Another celebrated unsolved problem in 
number theory is the twin-prime conjecture which 
states that there are infinitely many primes p for 
which p + 2 is also prime. The history of this 
problem is a little harder to trace but it dates at 
least to the mid-nineteenth century and so it shares 
with Goldbach’s conjecture both the important 
characteristics of simplicity of expression and 
longevity (though, as far as I know, no novel). 
Gaps between prime numbers have long been 
known to be somewhat slippery animals that give 
up their secrets begrudgingly, though it is easy to 
prove that there exist arbitrarily long sequences of 
composite numbers (just consider n! + 2, n! + 3,…, 



n! + n). The proof of the prime number theorem at 
the end of the nineteenth century which itself was 
the culmination of almost a century of effort, 
showed that the ‘average’ gap between primes 
near p is roughly log p so that the gaps get bigger 
(on average), though rather slowly. For large 
numbers the average gap between primes is 
approximately 2.3 times the number of digits. 
 

The prime twin conjecture has not been 
proved, but some significant progress has been 
made in 2013. Instead of asking if there are 
infinitely many primes p for which p + 2 is prime, 
we could ask whether there is a number N such 
that there are infinitely many prime gaps which 
are less than or equal to N. This is the bounded 
gaps conjecture and until 2013 it was unproven, 
but in May Yitang Zhang from the University of 
New Hampshire established that such an N does 
exist. Contrary to the stereotype of new results like 
this being the domain of brilliant youngsters, 
Zhang is older than me (there’s hope yet!) and 
(until now) relatively unknown. While Helfgott’s 
work is an impressive refinement of previous 
work, Zhang’s result appears to be entirely new 
and opens up fresh avenues for research. That is 
not to say that Zhang did not rely on previous 
work of others, in particular he built on the 
important contributions made by Goldston, Pintz 
and Yıldırım, who in 2005 proved a result which 
showed that there will always be pairs of primes 
much closer together (in a sense which can be 
made precise) than the average spacing predicts 
but who couldn’t bound the gaps by any finite 
number. 

 
Zhang’s work was quickly hailed as a 

breakthrough and number theorists immediately 
got to work seeing if they could improve the result 
by reducing N. Zhang proved the bounded gaps 
conjecture for N = 70,000,000, the twin primes 
conjecture corresponds to N = 2. With appropriate 
coordination (as supplied in this case by Terence 
Tao) the internet allows rapid exchange of ideas 
and results and the value of N has been steadily 
reduced during the last few months with 
improvements announced almost daily. As of 17 
August, N had been reduced to 4680, all based on 
refinements of Zhang’s analysis. 
  
 The publication of each of these results 
was pretty momentous and the fact that they both 
occurred in the same month only Mathematics TODAY 

OCTOBER 2013 195 served to heighten the excitement 
within the mathematical fraternity. They also shed 
light on some changes in the way mathematics 
research is conducted nowadays. In the first case, 
we see a problem succumbing to a combined 
assault from theory and number-crunching power. 
This is of course not new, the four colour theorem 

was solved in this way back in 1976, but the 
inexorable increase in computing power will no 
doubt make many more problems amenable to this 
type of approach. In the second case we see the 
power of the internet at work. The speed with 
which number theorists have reduced Zhang’s 
value of N strikes me as nothing short of 
incredible. What would have in the past taken 
many years has been compressed into months 
simply by providing an appropriate vehicle for 
communal research (Tim Gowers’ polymath 
project, begun in 2009). 
  
 Both examples also serve to illustrate the 
general pattern that can often be observed in the 
resolution of really hard mathematical problems. A 
breakthrough is achieved which is quickly refined, 
refinements getting progressively less significant, 
until a hiatus is reached awaiting the next big 
breakthrough. The proof of Fermat’s Last Theorem 
followed a similar pattern – Andrew Wiles 
providing the final breakthrough and Richard 
Taylor subsequently helping to correct an 
important technical flaw. The word on the street, 
by which I mean what I read on Terence Tao’s 
blog, is that Zhang’s breakthrough will not be 
sufficient to lead to a proof of the prime-twin 
conjecture. The methods may be amenable to 
further refinement but it is unrealistic to suppose 
that they will allow mathematicians to reach N = 2. 
So another breakthrough will be required, maybe 
more than one, but there appears to be a general 
acceptance that we are considerably closer to a 
proof than we were a year ago. 
 

Courtesy: Mathematics TODAY OCTOBER 2013  

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 



 

The Beauty of Bounded Gaps 
 

Yitang Zhang, lecturer in mathematics at the 
University of New Hampshire 

 

A huge discovery about prime numbers—and 

what it means for the future of math. 

Yitang “Tom” Zhang, a popular math 
professor at the University of New Hampshire, 
stunned the world of pure mathematics when he 
announced that he had proven the “bounded 
gaps” conjecture about the distribution of prime 
numbers—a crucial milestone on the way to the 
even more elusive twin primes conjecture, and a 
major achievement in itself. 

The stereotype, outmoded though it is, is 
that new mathematical discoveries emerge from 
the minds of dewy young geniuses. But Zhang is 
over 50. What’s more, he hasn’t published a paper 
since 2001. Some of the world’s most prominent 
number theorists have been hammering on the 
bounded gaps problem for decades now, so the 
sudden resolution of the problem by a seemingly 
inactive mathematician far from the action at 
Harvard, Princeton, and Stanford came as a 
tremendous surprise. 

But the fact that the conjecture is true was 
no surprise at all. Mathematicians have a 
reputation of being no-bullshit hard cases who 
don’t believe a thing until it’s locked down and 
proved. That’s not quite true. All of us believed the 
bounded gaps conjecture before Zhang’s big 
reveal, and we all believe the twin primes 
conjecture even though it remains unproven. Why? 

Let’s start with what the conjectures say. 
The prime numbers are those numbers greater 
than 1 that aren’t multiples of any number smaller 
than themselves and greater than 1; so 7 is a prime, 
but 9 is not, because it’s divisible by 3. The first few 
primes are: 2, 3, 5, 7, 11, 13 … 

Every positive number can be expressed in 
just one way as a product of prime numbers. For  

 

instance, 60 is made up of two 2s, one 3, and one 5. 
(This is why we don’t take 1 to be a prime, though 
some mathematicians have done so in the past; it 
breaks the uniqueness, because if 1 counts as 
prime, 60 could be written as 2 x 2 x 3 x 5 and 1 x 2 
x 2 x 3 x 5 and 1 x 1 x 2 x 2 x 3 x 5 ...) 

The primes are the atoms of number 
theory, the basic indivisible entities of which all 
numbers are made. As such, they’ve been the 
object of intense study ever since number theory 
started. One of the very first theorems in number 
theory is that of Euclid, which tells us that the 
primes are infinite in number; we will never run 
out, no matter how far along the number line we 
let our minds range. 

But mathematicians are greedy types, not 
inclined to be satisfied with mere assertion of 
infinitude. After all, there’s infinite and then 
there’s infinite. There are infinitely many powers of 
2, but they’re very rare. Among the first 1,000 
numbers, there are only 10 powers of 2: 1, 2, 4, 8, 
16, 32, 64, 128, 256, and 512. 

There are infinitely many even numbers, 
too, but they’re much more common: exactly 500 
out of the first 1,000. In fact, it’s pretty apparent 
that out of the first X numbers, just about (1/2)X 
will be even. 

Primes, it turns out, are intermediate—
more common than the powers of 2 but rarer than 
even numbers. Among the first X numbers, about 
X/log(X) are prime; this is the Prime Number 
Theorem, proven at the end of the 19th century by 
Hadamard and de la Vallée Poussin. This means, 
in particular, that prime numbers get less and less 
common as the numbers get bigger, though the 
decrease is very slow; a random number with 20 
digits is half as likely to be prime as a random 
number with 10 digits. 

Naturally, one imagines that the more 
common a certain type of number, the smaller the 
gaps between instances of that type of number. If 
you’re looking at an even number, you never have 
to travel farther than 2 numbers forward to 
encounter the next even; in fact, the gaps between 
the even numbers are always exactly of size 2. For 
the powers of 2, it’s a different story. The gaps 
between successive powers of 2 grow 
exponentially, and there are finitely many gaps of 
any given size; once you get past 16, for instance, 
you will never again see two powers of 2 separated 
by a gap of size 15 or less. 

Those two problems are easy, but the 
question of gaps between consecutive primes is 
harder. It’s so hard that, even after Zhang’s 
breakthrough, it remains a mystery in many 
respects. 

http://simonsfoundation.org/features/science-news/unheralded-mathematician-bridges-the-prime-gap/
http://www.slate.com/articles/life/do_the_math/2003/05/is_math_a_young_mans_game.html
http://arxiv.org/abs/1209.2007
http://arxiv.org/abs/1209.2007
http://en.wikipedia.org/wiki/Prime_number_theorem
http://en.wikipedia.org/wiki/Prime_number_theorem


And yet we think we know what to expect, 
thanks to a remarkably fruitful point of view—we 
think of primes as random numbers. The reason the 
fruitfulness of this viewpoint is so remarkable is 
that the viewpoint is so very, very false. Primes are 
not random! Nothing about them is arbitrary or 
subject to chance. Quite the opposite—we take 
them as immutable features of the universe, and 
carve them on the golden records we shoot out 
into interstellar space to prove to the ETs that 
we’re no dopes. 

If you start thinking really hard about 
what “random” really means, first you get a little 
nauseated, and a little after that you find you’re 
doing analytic philosophy. So let’s not go down 
that road. 

Instead, take the mathematician’s path. 
The primes are not random, but it turns out that in 
many ways they act as if they were. For example, 
when you divide a random number by 3, the 
remainder is either 0, 1, or 2, and each case arises 
equally often. When you divide a big prime 
number by 3, the quotient can’t come out even; 
otherwise, the so-called prime would be divisible 
by 3, which would mean it wasn’t really a prime at 
all. But an old theorem of Dirichlet tells us that 
remainder 1 shows up about equally often as 
remainder 2, just as is the case for random 
numbers. So as far as “remainder modulo 3” goes, 
prime numbers, apart from not being multiples of 
3, look random. 

What about the gaps between consecutive 
primes? You might think that, because prime 
numbers get rarer and rarer as numbers get bigger, 
that they also get farther and farther apart. On 
average, that’s indeed the case. But what Yitang 
Zhang just proved is that there are infinitely many 
pairs of primes that differ by at most 70,000,000. In 
other words, that the gap between one prime and 
the next is bounded by 70,000,000 infinitely often—
thus, the “bounded gaps” conjecture. 

On first glance, this might seem a 
miraculous phenomenon. If the primes are tending 
to be farther and farther apart, what’s causing 
there to be so many pairs that are close together? Is 
it some kind of prime gravity? 

Nothing of the kind. If you strew numbers 
at random, it’s very likely that some pairs will, by 
chance, land very close together. (The left-hand 
picture on this page is a nice illustration of how 
this works in the plane; the points are chosen 
independently and completely randomly, but you 
see some clumps and clusters all the same.) 

It’s not hard to compute that, if prime 
numbers behaved like random numbers, you’d see 
precisely the behavior that Zhang demonstrated. 
Even more: You’d expect to see infinitely many 
pairs of primes that are separated by only 2, as the 
twin primes conjecture claims. 

(The one computation in this article 
follows. If you’re not onboard, avert your eyes and 
rejoin the text where it says “And a lot of twin 
primes …”) 

Among the first N numbers, about N/log 
N of them are primes. If these were distributed 
randomly, each number n would have a 1/log N 
chance of being prime. The chance that n and n+2 
are both prime should thus be about (1/log N)^2. 
So how many pairs of primes separated by 2 
should we expect to see? There are about N pairs 
(n, n+2) in the range of interest, and each one has a 
(1/log N)^2 chance of being a twin prime, so one 
should expect to find about N/(log N)^2 twin 
primes in the interval. 

There are some deviations from pure 
randomness whose small effects number theorists 
know how to handle; a more refined analysis 
taking these into account suggests that the number 
of twin primes should in fact be about 32 percent 
greater than N/(log N)^2. This better 
approximation gives a prediction that the number 
of twin primes less than a quadrillion should be 
about 1.1 trillion; the actual figure is 
1,177,209,242,304. That’s a lot of twin primes. 

And a lot of twin primes is exactly what 
number theorists expect to find no matter how big 
the numbers get—not because we think there’s a 
deep, miraculous structure hidden in the primes, 
but precisely because we don’t think so. We expect the 
primes to be tossed around at random like dirt. If 
the twin primes conjecture were false, that would 
be a miracle, requiring that some hitherto 
unknown force be pushing the primes apart. 

Not to pull back the curtain too much, but 
a lot of famous conjectures in number theory are 
like this. The Goldbach conjecture that every even 
number is the sum of two primes? The ABC 
conjecture, for which Shin Mochizuki 
controversially claimed a proof last fall? The 
conjecture that the primes contain arbitrarily long 
arithmetic progressions, whose resolution by Ben 
Green and Terry Tao in 2004 helped win Tao a 
Fields Medal? All are immensely difficult, but they 
are all exactly what one is guided to believe by the 
example of random numbers. 

It’s one thing to know what to expect and 
quite another to prove one’s expectation is correct. 

http://plato.stanford.edu/entries/chance-randomness/
http://plato.stanford.edu/entries/chance-randomness/
http://research.microsoft.com/en-us/um/people/peres/GAF/GAF.html
http://numbers.computation.free.fr/Constants/Primes/twin.html
http://numbers.computation.free.fr/Constants/Primes/twin.html
http://projectwordsworth.com/the-paradox-of-the-proof/
http://projectwordsworth.com/the-paradox-of-the-proof/
http://newsroom.ucla.edu/portal/ucla/Terence-Tao-Mozart-of-Math-7252.aspx?RelNum=7252
http://newsroom.ucla.edu/portal/ucla/Terence-Tao-Mozart-of-Math-7252.aspx?RelNum=7252


Despite the apparent simplicity of the bounded 
gaps conjecture, Zhang’s proof requires some of 
the deepest theorems of modern mathematics, like 
Pierre Deligne’s results relating averages of 
number-theoretic functions with the geometry of 
high-dimensional spaces. (More classically minded 
analytic number theorists are already wondering 
whether Zhang’s proof can be modified to avoid 
such abstruse stuff.) 

Building on the work of many 
predecessors, Zhang is able to show in a rather 
precise sense that the prime numbers look random 
in the first way we mentioned, concerning the 
remainders obtained after division by many 
different integers. From this (following a path laid 
out by Goldston, Pintz, and Yıldırım, the last 
people to make any progress on prime gaps) he 
can show that the prime numbers look random in a 
totally different sense, having to do with the sizes 
of the gaps between them. Random is random! 

Zhang’s success (along with the work of 
Green and Tao) points to a prospect even more 
exciting than any individual result about primes—
that we might, in the end, be on our way to 
developing a richer theory of randomness. How 
wonderfully paradoxical: What helps us break 
down the final mysteries about prime numbers 
may be new mathematical ideas that structure the 
concept of structurelessness itself. 

(A few suggestions for further reading for 
those with more technical tastes: Number theorist 
Emmanuel Kowalski offers a first report on 
Zhang’s paper. And here’s Terry Tao on the 
dichotomy between structure and randomness.) 

http://www.slate.com/articles/health_and_scienc
e/do_the_math/2013/05/yitang_zhang_twin_pri
mes_conjecture_a_huge_discovery_about_prime_n
umbers.2.html 

Angel Problem 

“The angel problem is a question in game 
theory proposed by John Horton Conway.[1] The 
game is commonly referred to as the Angels and 
Devils game. The game is played by two players 
called the angel and the devil. It is played on an 
infinite chessboard (or equivalently the points of a 
2D lattice). The angel has a power k (a natural 
number 1 or higher), specified before the games 
starts. The board starts empty with the angel at the 
origin. On each turn, the angel jumps to a different 
empty square which could be reached by at most k 
moves of a chess king. i.e. The distance from the 
starting square is at most k in the infinity norm.) 
The devil, on his turn, may add a block on any 

single square not containing the angel. The angel 
may leap over blocked squares, but cannot land on 
them. The devil wins if the angel is unable to 
move. The angel wins by surviving indefinitely.”  

 

“The angel problem is: can an angel with 
high enough power win?” 

“There must exist a winning strategy for 
one of the players. If the devil can force a win then 
he can do so in a finite number of moves. If the 
devil cannot force a win then there is always an 
action that the angel can take to avoid losing and a 
winning strategy for her is always to pick such a 
move. More abstractly, the “pay-off set” (i.e., the 
set of all plays in which the angel wins) is a closed 
set (in the natural topology on the set of all plays), 
and it is known that such games are determined.” 

“Conway offered a reward for a general 
solution to this problem ($100 for a winning 
strategy for an angel of sufficiently high power, 
and $1000 for a proof that the devil can win 
irrespective of the angel’s power). Progress was 
made first in higher dimensions, with some 
beautiful proofs. In late 2006, the original problem 
was solved when independent proofs appeared, 
showing that an angel can win. Bowditch proved 
that a 4-angel can win[2] and Máthé[3] and 
Kloster[4] gave proofs that a 2-angel can win.” 

http://en.wikipedia.org/wiki/Angel_problem 

 

 

 

 
 
 
 
 
 
 
 
 

http://terrytao.wordpress.com/2008/11/19/marker-lecture-iii-small-gaps-between-primes/
http://terrytao.wordpress.com/2008/11/19/marker-lecture-iii-small-gaps-between-primes/
http://blogs.ethz.ch/kowalski/2013/05/21/bounded-gaps-between-primes/
http://blogs.ethz.ch/kowalski/2013/05/21/bounded-gaps-between-primes/
http://blogs.ethz.ch/kowalski/2013/05/21/bounded-gaps-between-primes/
http://terrytao.wordpress.com/2007/04/05/simons-lecture-i-structure-and-randomness-in-fourier-analysis-and-number-theory/
http://terrytao.wordpress.com/2007/04/05/simons-lecture-i-structure-and-randomness-in-fourier-analysis-and-number-theory/
http://www.slate.com/articles/health_and_science/do_the_math/2013/05/yitang_zhang_twin_primes_conjecture_a_huge_discovery_about_prime_numbers.2.html
http://www.slate.com/articles/health_and_science/do_the_math/2013/05/yitang_zhang_twin_primes_conjecture_a_huge_discovery_about_prime_numbers.2.html
http://www.slate.com/articles/health_and_science/do_the_math/2013/05/yitang_zhang_twin_primes_conjecture_a_huge_discovery_about_prime_numbers.2.html
http://www.slate.com/articles/health_and_science/do_the_math/2013/05/yitang_zhang_twin_primes_conjecture_a_huge_discovery_about_prime_numbers.2.html
http://en.wikipedia.org/wiki/Angel_problem


 
Links and Knots 

Heather McLeay 

 
 
 
These simple puzzles have been selected 

because they require no knowledge of knot theory, 
just a careful inspection of the patterns. The 
puzzles are taken from The Knots Puzzle Book by 
Heather McLeay published by Tarquin 
Publications [1]. The book gives a simple 
introduction to the classification of knots and a 
little about prime knots, crossing numbers and 
knot arithmetic, just enough theory for solving 
some more puzzles. There is serious mathematics 
at the next stage and you might like to go to the 
Knots Exhibition website to find answers to 
questions such as "What sort of mathematical 
theory begins with the simple reef knot?'' and 
"Why are mathematicians interested in such 
problems?'' See our review of this exhibition. 

A mathematical knot is really an "endless 
knot'' made from a single strand, with crossovers 
where one piece of the rope crosses another piece, 
and the ends joined together to make it continuous. 
The rope can then be rearranged, but not untied, 
and however it is handled the knot remains 
essentially the same. Knots which can be 
rearranged to have no crossovers at all are called 
unknots. 

 

Some of these decorative knot patterns are 

formed from a single strand, others from several 

strands. How many separate strands are needed to 

make up each of these designs? 

 

 

 

 

 

 

 

 

The two Celtic knot patterns below look 

very similar except that one might be described as 

a 'four by four' and the other as a 'five by four'. 

What is the fundamental difference between them? 

Some patterns like this can be formed from a single 

strand and others need several strands, what can 

you say about the dimensions of these two types? 

 

Which of these diagrams show knots made 

from single strands and which are made from 

linked strands? 

 

How many linked strands do you need to 
make a ten crossing version of the diagram above? 

Here are some examples of more 
complicated links. How many separate strands are 
there in each case? 

http://www.popmath.org.uk/exhib/knotexhib.html
http://nrich.maths.org/public/viewer.php?obj_id=1329&part=index


 

Is there an easy way to predict how many 
strands knots like these will have? 

In his article entitled Celtic Design, in the 
March 1998 issue of Mathematics in School [2], 
John Matthews describes how he used the !Draw 
package on an Acorn 310 to design five basic 
squares and then to 'grid lock', 'copy' and 
'transform' the squares, assembling the copies to 
produce Celtic patterns and to design his own. You 
might like to try this for yourself. In the same 
article John produces sets of tiles, with just the 
right number of each of the five basic squares in 

the set, so that the tiles can be fitted together, like a 

jigsaw, to make a given design. The article gives 
sets of tiles for five designs. With this idea you can 
easily produce lots of the tiles and make up your 
own designs. Here we are at the borders of 
mathematics, art and design. Thank you John for a 
delightful starter to many more knotty 
possibilities. 
  

[1] Address for Tarquin Publications: Stradbroke, Diss, 

Norfolk IP21 5JP, England. 

[2] For further information you can write to John 

Matthews, Auchenharvie Academy, Saltoats Rd, 

Stevenston, Scotland, KA20 3JW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Another Way of Thinking: A Review of Mathematical Models of Crime 

With all the numbers bandied about in the 

media, one might be forgiven for thinking that 

crime rates are up – and not to any good either. 

Homicide rates, conviction rates, the increase in 

robberies with accompanying charts figures galore. 

Statistics has generally gone hand in hand with 

crime and all this number crunching has 

traditionally left a bitter taste in the public’s 

mouth. Add mathematics to this mix, and this 

bitter taste turns noxious. 

Though the popularity of television shows 

like NUMB3RS has made mathematics more 

palatable to the crime-fearing public, mathematics 

is still viewed as a distant, fearsome relative of 

criminology. This, despite its long association with 

the social sciences. The use of mathematics to 

describe social phenomena has its roots in the ‘Era 

of Enlightenment’ in the nineteenth century with 

the birth of statistics and probability theory and 

their use in the collection and analysis of social 

statistics. However, this collaboration was short-

lived as the social sciences turned away from 

statistics and moved towards a psychological 

approach to understanding behavior. 

 

Criminal behaviour and activities have 

evolved in tandem with changes in technology. 

Criminal activities now include arms, drugs and 

human trafficking, money laundering, cyber-crime, 

identity theft and gangs with international links. 

Crime has become more sophisticated, organised 

and transnational. With the changing nature of 

crime, traditional approaches to tack-ling it are fast 

becoming obsolete and there is a growing need for 

a new way of thinking to meet this challenge head 

on. 

Mathematical modeling and numerical 

simulation partners in crime 

The advent of cheaper, more powerful 

computers has ushered in a revolution in 

mathematics. Mathematical modeling uses math-

ematics to transform real-world systems into 

abstract models so as to understand simulate or 

make predictions about their behaviour. Some of 

these systems may have no analytical solutions 

and numerical simulation via the computer must 

be used to determine their approximate solutions. 

These solutions may be in the form of graphs 

showing the system’s behaviour over time as well 

as its sensitivity to variations in key model 

parameters. 

Mathematical modeling and numerical 

simulation of systems have once again resulted in a 

friendship of sorts between mathematics and 

criminology. When modeling criminal behaviour 

and crime, since human behaviour is inherently 

nonlinear, we assume that they may best be 

described by a nonlinear system. This is contrary 

to the models generally used by policy-makers, 

who are susceptible to what Ball [1] calls linear 

thinking. This has led to the development of linear 

models of human behaviour with their inherent 

assumptions that cause-and-effect relationships are 

identifiable and that there is proportionality 

between inputs and outputs. These properties 

make linear systems particularly useful for 

prediction and manipulation hence their 

popularity in modelling. 

However, when a system contains 

nonlinear terms, analytical solutions may be 

difficult to obtain so that numerical methods must 

be used to obtain the approximate solutions. In 

nonlinear systems, proportionality does not hold 

and there is a disproportional relationship between 

cause and effect: small changes in key parameters 

can trigger large changes in crime rate. Another 

feature of nonlinearity is the existence of 

bifurcation points in key parameters. The 

bifurcations give ‘tipping points’ of the system at 

which the system may make a sudden transition to 

a new, very different behaviour. 

‘Mathematical modelling and numerical 

simulation complement the traditional empirical 

and experimental approaches to research’ [3]. 

Modelling is especially important in criminology 

since it helps organise and visualise existing data, 



identify areas with missing data and is relatively 

inexpensive and more practical than carrying out 

an actual experiment. Modelling also offers a 

means of varying conditions so as to conduct social 

experiments but without the ethics and costs 

attached to experimenting on human beings. The 

insights provided by the models may be especially 

helpful to those in authority who are charged with 

the responsibility of designing policies often with a 

lack of available data. 

Crime ‘math’ers 

 Terminology used to characterise crime 
and criminal behaviour seems to lend itself almost 
naturally to the use of existing mathematical 
models so as to mathematically represent a 
particular crime situation. Some of these terms 
include crime waves, the spread of crime, crime 
epidemic, the migration of criminals, criminals 
preying upon the population and the formation of 
crime hotspots. Two mathematical approaches 
used in the modelling of crime and criminal 
behaviour are described next. 

Modelling via differential equations 
 

In nature, transport occurs in fluids 
through the combination of advection and 
diffusion. Reaction diffusion advection systems are 
used to study the spread of wave like behavior in a 
number of fields such as the migration of invasive 
species, the propagation of genes and the spread of 
chemical reactions. A reaction diffusion advection 
model has been applied by Stanford researchers 
Nancy Rodríguez, Henri Berestycki and Lenya 
Ryzhik to describe and reduce the spread of crime 
waves outward from crime hotspots. Reaction 
diffusion partial differential equations have also 
been used to study the formation, dynamics, and 
steady state properties of crime hotspots and to 
explain why these hotspots may either be 
displaced or eradicated by police action. 

Criminal behavior and violence may also 
be treated as a socially infectious disease using 
concepts borrowed from epidemiology. 
Researchers have recognized the propensity for 
violent acts to cluster, to spread from one area to 
another and to mutate and have suggested 
applying existing techniques from mathematical 
epidemiology to treat the spread of violence in a 
population. 

 

 
 

 
In one of the earliest papers to 

acknowledge the social nature of crime, individual 
crime was treated as a function of exposure to 
crime prone peers, where an individual is 
influenced in his choice to commit a criminal act by 
his perceived probability of punishment as 
obtained from his acquaintances. Ormerod, 
Mounfield and Smith applied an infectious disease 
model consisting of a system of coupled, non linear 
ordinary differential equations to violent crime 
and burglary in the UK. The model divided the 
population into four groups three dependent on 
their susceptibility to commit crimes and one 
group representing those in jail. The model was 
used to test the effect of crime fighting policies on 
the criminal population. 

 
A similar model was developed for the 

growth of gangs in a population by dividing the 

population into four distinct groups based on gang 

status and risk factors with respect to gang 

membership. The model examined the impact of 

various crime fighting strategies by changing 

parameter values like imprisonment and 

recidivism rates and identified bifurcation points 

which resulted in the disappearance of gang 

members from the population. 

Closely related to infectious disease 
models are predator prey models which also use 
systems of ordinary differential equations and 
seem to be a natural fit for modeling criminals who 
‘prey upon’ the public. These models have also 
been used in the inverse setting to describe the 
interactions between policemen (predators) and 
criminals (prey) and to examine the effects of 
changes in policy and law enforcement. Other 
models include Nuno et al. Who modeled a 
dynamical system based on routine activity theory 
containing a group of motivated off Enders Y, 
suitable targets X and a lack of guardianship. The 
model consisted of owners X who are the prey, 
criminals Y who are the predators of X, and 



security guards Z who are predators of both X and 
Y. Nuno et al. also compared two different 
strategies (upgrading police forces and increasing 
social measures) for fighting crime in a criminal 
prone self protected society divided in to n 
different socio economic classes. Criminals preying 
upon the villagers who banded together in group 
defense were modeled so that the criminals 
switched between areas targeting the less 
populated areas. Police efforts to catch criminals 
were included in the model by applying constant 
effort and constant yield harvesting functions to 
capture the criminals. 

 
Agent based models 

 
Another approach to modeling crime and 

criminal behavior in which numerical simulation 
plays an important role uses agent based models 
(ABM). These are made up of a collection of 
autonomous decision making entities called agents 
who interact with each other and their 
environment, according to a set of specified 
behavioral rules. 
 

When used to model crime, the agents 
generally represent people criminals, potential 
victims, police etc. The agents populate an artificial 
environment that is designed to reflect features 
such as buildings, a street network, a social 
network, or barriers to movement etc. The 
movement and interaction of agents are defined by 
either equations or rules. The inherently spatial 
nature of human movement, interactions and the 
role of place in influencing these interactions are 
naturally incorporated into these models. 
 

In crime, agent based models are popular 
in investigating the environmental aspects of 
criminal behavior like the mapping of crime 
hotspots and crime displacement, street gang 
rivalries, street robberies and burglary. Agent 
based models have also been combined with 
Geographic Information Systems (GIS) to simulate 
dynamic spatial systems. Other applications 
include the dependence of the frequency of 
violence and criminal activity on population size 
and whether a society without crime is possible. 
While the previous modelling approach was 
characterized by a ‘top-down’ modelling approach 
where the behavior of the system is described at 
the start by a system of equations, the agent-based 
model is characterized by a ‘bottom-up’ approach 
where there is emergent behavior. 
 
Towards another way of thinking 

 
Models may be used to guide decision-

making, develop policies or to evaluate specific 
strategies aimed at reducing crime. In developing 

models, the question of model validity or how well 
the model rep-resents the real-world situation for 
which it is designed naturally arises. Model 
validation techniques include consultation with 
experts about the model design and its behavior, 
parameter variability-sensitivity analyses of model 
behavior and the use of statistical tests and 
procedures to compare model output for different 
experimental conditions with experimental data. 

 
 

 

Experimental data in this research refers to 

crime data and statistics. In designing models of 

crime, there are challenges associated with the data 

collection process. Some of these challenges 

include case attrition where cases that enter the 

system get lost somewhere along the way, lack of 

data on offenders, lack of self-report studies, 

unreported crime due to a lack of trust in the 

police and desensitization to crime which may 

result in varying degrees of tolerance to crime. This 

has led to concerns about whether crime data 

should be viewed as representative of the crime 

situation in a particular area and may lead to 

invalid explanations of crime phenomenon and 

ineffectual policies to re-duce crime. Thus, most of 

the models reviewed were used not to predict 

future trends but for insight into the behavior of 

the system. 

In all of the models reviewed, we noted 

that building a crime model involved a 

multidisciplinary approach so as to bridge the gap 

between the physical and the social sciences. The 

‘ideal type of the division of labour in quantitative 

social science would be one where the sociologist 

formulates a theory, the mathematician translates 

it into a mathematical model, and the statistician 

pro-vides the tool for estimating the model’. 

 
Courtesy: Mathematics TODAY OCTOBER 2013  



Millennium Prize Problems 

 

The Millennium Prize Problems are seven 

problems in mathematics that were stated by the 

Clay Mathematics Institute in 2000. As of July 2013, 

six of the problems remain unsolved. A correct 

solution to any of the problems results in a 

US$1,000,000 prize (sometimes called a Millennium 

Prize) being awarded by the institute. The Poincaré 

conjecture, the only Millennium Prize Problem to 

be solved so far, was solved by Grigori Perelman, 

but he declined the award in 2010. 

 

Problems 

Yang–Mills and Mass Gap 

Experiment and computer simulations suggest 

the existence of a "mass gap" in the solution to the 

quantum versions of the Yang-Mills equations. But no 

proof of this property is known. 

Riemann Hypothesis 

The prime number theorem determines the 
average distribution of the primes. The Riemann 
hypothesis tells us about the deviation from the 
average. Formulated in Riemann's 1859 paper, it 
asserts that all the 'non-obvious' zeros of the zeta 
function are complex numbers with real part 1/2. 

P vs. NP Problem 

If it is easy to check that a solution to a 
problem is correct, is it also easy to solve the 
problem? This is the essence of the P vs NP 
question. Typical of the NP problems is that of the 
Hamiltonian Path Problem: given N cities to visit, 
how can one do this without visiting a city twice? 
If you give me a solution, I can easily check that it 
is correct. But I cannot so easily find a solution. 

Navier–Stokes Equation 

This is the equation which governs the 
flow of fluids such as water and air. However, 
there is no proof for the most basic questions one 
can ask: do solutions exist, and are they unique? 
Why ask for a proof? Because a proof gives not 
only certitude, but also understanding. 

Hodge Conjecture 

The answer to this conjecture determines 
how much of the topology of the solution set of a 

system of algebraic equations can be defined in 
terms of further algebraic equations. The Hodge 
conjecture is known in certain special cases, e.g., 
when the solution set has dimension less than four. 
But in dimension four it is unknown. 

Poincaré Conjecture  

In 1904 the French mathematician Henri 
Poincaré asked if the three dimensional sphere is 
characterized as the unique simply connected three 
manifold. This question, the Poincaré conjecture, 
was a special case of Thurston's geometrization 
conjecture. Perelman's proof tells us that every 
three manifold is built from a set of standard 
pieces, each with one of eight well-understood 
geometries. 

Birch and Swinnerton-Dyer Conjecture 

Supported by much experimental 
evidence, this conjecture relates the number of 
points on an elliptic curve mod p to the rank of the 
group of rational points. Elliptic curves, defined by 
cubic equations in two variables, are fundamental 
mathematical objects that arise in many areas: 
Wiles' proof of the Fermat Conjecture, factorization 
of numbers into primes, and cryptography, to 
name three. 
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Unsolved problems in mathematics 

Additive number theory 

Beal's conjecture 

Beal's conjecture is a conjecture in number 
theory: 

If  where A, B, C, x, y, and z are 
positive integers with x, y, z > 2, then A, B, and C 
have a common prime factor. 

Billionaire banker Andrew Beal 
formulated this conjecture in 1993 while 
investigating generalizations of Fermat's last 
theorem.[1] It has been claimed that the same 
conjecture was independently formulated by 
Robert Tijdeman and Don Zagier,  and it has also 
been referred to as the Tijdeman Zagier conjecture.  

For a proof or counterexample published 
in a refereed journal, Beal initially offered a prize 
of US $5,000 in 1997, raising it to $50,000 over ten 
years,[4] but has since raised it to US $1,000,000 

Gilbreath's conjecture 

Gilbreath's conjecture is a hypothesis, or a 
conjecture, in number theory regarding the 
sequences generated by applying the forward 
difference operator to consecutive prime numbers 
and leaving the results unsigned, and then 
repeating this process on consecutive terms in the 
resulting sequence, and so forth. The statement is 
named after mathematician Norman L. Gilbreath 
who, in 1958, presented it to the mathematical 
community after observing the pattern by chance 
while doing arithmetic on a napkin.[1] In 1878, 
eighty years before Gilbreath's discovery, François 
Proth had, however, published the same 
observations along with an attempted proof, which 
was later shown to be false. 

Algebra 

Hilbert's sixteenth problem 

Hilbert's 16th problem was posed by 
David Hilbert at the Paris conference of the 
International Congress of Mathematicians in 1900, 
as part of his list of 23 problems in mathematics.  

The original problem was posed as the 
Problem of the topology of algebraic curves and surfaces 
(Problem der Topologie algebraischer Kurven und 
Flächen). 

Actually the problem consists of two similar 
problems in different branches of mathematics: 

 An investigation of the relative positions of 
the branches of real algebraic curves of 
degree n (and similarly for algebraic 
surfaces). 

 The determination of the upper bound for 
the number of limit cycles in two-
dimensional polynomial vector fields of 
degree n and an investigation of their 
relative positions. 

The first problem is yet unsolved for n = 8. 
Therefore, this problem is what usually is meant 
when talking about Hilbert's sixteenth problem in 
real algebraic geometry. The second problem also 
remains unsolved: no upper bound for the number 
of limit cycles is known for any n>1, and this is 
what usually is meant by Hilbert's sixteenth 
problem in the field of dynamical systems. 

Algebraic geometry 

Jacobian conjecture 

In mathematics, the Jacobian conjecture is 
a celebrated problem on polynomials in several 
variables. It was first posed in 1939 by Ott-
Heinrich Keller. It was later named and widely 
publicised by Shreeram Abhyankar, as an example 
of a question in the area of algebraic geometry that 
requires little beyond knowledge of calculus to 
state. 

The Jacobian conjecture is notorious for the 
large number of attempted proofs that turned out 
to contain subtle errors. As of February 2013, there 
are no plausible claims to have proved it. 

Nakai conjecture 

In mathematics, the Nakai conjecture is an 
unproven characterization of smooth algebraic 
varieties, conjectured by Japanese mathematician 
Yoshikazu Nakai in 1961.  It states that if V is a 
complex algebraic variety, such that its ring of 
differential operators is generated by the 
derivations it contains, then V is a smooth variety. 
The converse statement, that smooth algebraic 
varieties have rings of differential operators that 
are generated by their derivations, is a result of 
Alexander Grothendieck.  

The Nakai conjecture is known to be true 
for algebraic curves.  A proof of the conjecture 
would also prove the Zariski-Lipman conjecture, 
for a complex variety V with coordinate ring R. 
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This conjecture states that if the derivations of R 
are a free module over R, then V is smooth.   

Algebraic number theory 

Brumer–Stark conjecture 

The Brumer–Stark conjecture is a 
conjecture in algebraic number theory giving a 
rough generalization of both the analytic class 
number formula for Dedekind zeta functions, and 
also of Stickelberger's theorem about the 
factorization of Gauss sums. It is named after 
Armand Brumer and Harold Stark. 

It arises as a special case (abelian and first-
order) of Stark's conjecture, when the place that 
splits completely in the extension is finite. There 
are very few cases where the conjecture is known 
to be valid. Its importance arises, for instance, from 
its connection with Hilbert's twelfth problem. 

Combinatorics 

lonely runner conjecture  

In number theory, and especially the study 
of diophantine approximation, the lonely runner 
conjecture is a conjecture originally due to J. M. 
Wills in 1967. Applications of the conjecture are 
widespread in mathematics; they include view 
obstruction problems[1] and calculating the 
chromatic number of distance graphs and circulant 
graphs.[2] The conjecture was given its picturesque 
name by L. Goddyn in 1998 

Singmaster's conjecture  

Singmaster's conjecture is a conjecture in 
combinatorial number theory in mathematics, 
named after the British professor David 
Singmaster who proposed it in 1971. It says that 
there is a finite upper bound on the multiplicities 
of entries in Pascal's triangle (other than the 
number 1, which appears infinitely many times). It 
is clear that the only number that appears infinitely 
many times in Pascal's triangle is 1, because any 
other number x can appear only within the first 
x + 1 rows of the triangle. Paul Erdős said that 
Singmaster's conjecture is probably true but he 
suspected it would be very hard to prove. 

Let N(a) be the number of times the 
number a > 1 appears in Pascal's triangle. In big O 
notation, the conjecture is: 

 

Graph theory 

Total coloring  

In graph theory, total coloring is a type of 
graph coloring on the vertices and edges of a 
graph. When used without any qualification, a 
total coloring is always assumed to be proper in the 
sense that no adjacent edges and no edge and its 
end vertices are assigned the same color. The total 
chromatic number χ″(G) of a graph G is the least 
number of colors needed in any total coloring of G. 

Hadwiger conjecture  

In graph theory, the Hadwiger conjecture 
(or Hadwiger's conjecture) states that, if all proper 
colorings of an undirected graph G use k or more 
colors, then one can find k disjoint connected 
subgraphs of G such that each subgraph is 
connected by an edge to each other subgraph. 
Contracting the edges within each of these 
subgraphs so that each subgraph collapses to a 
single supervertex produces a complete graph Kk 
on k vertices as a minor of G. 

This conjecture, a far-reaching 
generalization of the four-color problem, was 
made by Hugo Hadwiger in 1943 and is still 
unsolved. Bollobás, Catlin & Erdős (1980) call it 
“one of the deepest unsolved problems in graph 
theory 

Number theory (prime numbers) 

 

Landau's problems 

  At the 1912 International Congress of 
Mathematicians, Edmund Landau listed four basic 
problems about primes. These problems were 
characterised in his speech as "unattackable at the 
present state of science" and are now known as 
Landau's problems. They are as follows: 

1. Goldbach's conjecture: Can every even 
integer greater than 2 be written as the 
sum of two primes? 

2. Twin prime conjecture: Are there infinitely 
many primes p such that p + 2 is prime? 

3. Legendre's conjecture: Does there always 
exist at least one prime between 
consecutive perfect squares? 

4. Are there infinitely many primes p such 
that p − 1 is a perfect square? In other 
words: Are there infinitely many primes of 
the form n2 + 1? (sequence A002496 in 
OEIS). 

As of 2013, all four problems are unresolved. 
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Problems solved recently 

Serre's modularity conjecture 

In mathematics, Serre's modularity 
conjecture, introduced by Serre (1975, 1987) based 
on some 1973–1974 correspondence with John Tate, 
states that an odd irreducible two-dimensional 
Galois representation over a finite field arises from 
a modular form, and a stronger version of his 
conjecture specifies the weight and level of the 
modular form. It was proved by Chandrashekhar 
Khare in the level 1 case[1] in 2005 and later in 2008 
a proof of the full conjecture was worked out 
jointly by Chandrashekhar Khare and Jean-Pierre 
Wintenberger 

Road coloring problem  

In graph theory the road coloring 

theorem, known until recently as the road coloring 

conjecture, deals with synchronized instructions. 
The issue involves whether by using such 
instructions, one can reach or locate an object or 
destination from any other point within a network 
(which might be a representation of city streets or a 
maze).[1] In the real world, this phenomenon would 
be as if you called a friend to ask for directions to 
his house, and he gave you a set of directions that 
worked no matter where you started from. This 
theorem also has implications in symbolic 
dynamics. 

The theorem was first conjectured by Roy 
Adler and Benjamin Weiss (1970). It was proved by 
Avraham Trahtman (2009) 

Hirsch conjecture 

In mathematical programming and 
polyhedral combinatorics, the Hirsch conjecture is 
the generally false statement that the edge-vertex 
graph of an n-facet polytope in d-dimensional 
Euclidean space has diameter no more than n − d. 
That is, any two vertices of the polytope must be 
connected to each other by a path of length at most 
n − d. The conjecture was first put forth in a letter 
by Warren M. Hirsch to George B. Dantzig in 
1957[1][2] and was motivated by the analysis of the 
simplex method in linear programming, as the 
diameter of a polytope provides a lower bound on 
the number of steps needed by the simplex 
method. 

The Hirsch conjecture was proven for d < 4 
and for various special cases.[3] The best known 
upper bounds showed only that polytopes have 
sub-exponential diameter as a function of n and 
d.[4] After more than fifty years, a counter-example 

was announced in May 2010 by Francisco Santos, 
from the University of Cantabria.[5][6][7] The result 
was presented at the conference 100 Years in Seattle: 
the mathematics of Klee and Grünbaum and appeared 
in Annals of Mathematics.[8] Specifically, the paper 
presented a 43-dimensional polytope of 86 facets 
with a diameter of more than 43. The 
counterexample has no direct consequences for the 
analysis of the simplex method, as it does not rule 
out the possibility of a larger but still linear or 
polynomial number of steps. 

Various equivalent formulations of the 
problem had been given, such as the d-step 
conjecture, which states that the diameter of any 
2d-facet polytope in d-dimensional Euclidean space 
is no more than d. 

Angel problem 

The angel problem is a question in game 
theory proposed by John Horton Conway.[1] The 
game is commonly referred to as the Angels and 
Devils game. The game is played by two players 
called the angel and the devil. It is played on an 
infinite chessboard (or equivalently the points of a 
2D lattice). The angel has a power k (a natural 
number 1 or higher), specified before the game 
starts. The board starts empty with the angel at the 
origin. On each turn, the angel jumps to a different 
empty square which could be reached by at most k 
moves of a chess king, i.e. the distance from the 
starting square is at most k in the infinity norm. 
The devil, on its turn, may add a block on any 
single square not containing the angel. The angel 
may leap over blocked squares, but cannot land on 
them. The devil wins if the angel is unable to 
move. The angel wins by surviving indefinitely. 

The angel problem is: can an angel with 
high enough power win? 

There must exist a winning strategy for 
one of the players. If the devil can force a win then 
it can do so in a finite number of moves. If the 
devil cannot force a win then there is always an 
action that the angel can take to avoid losing and a 
winning strategy for it is always to pick such a 
move. More abstractly, the "pay-off set" (i.e., the set 
of all plays in which the angel wins) is a closed set 
(in the natural topology on the set of all plays), and 
it is known that such games are determined. 

Conway offered a reward for a general 
solution to this problem ($100 for a winning 
strategy for an angel of sufficiently high power, 
and $1000 for a proof that the devil can win 
irrespective of the angel's power). Progress was 
made first in higher dimensions. In late 2006, the 
original problem was solved when independent 
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proofs appeared, showing that an angel can win. 
Bowditch proved that a 4-angel can win[2] and 
Máthé[3] and Kloster[4] gave proofs that a 2-angel 
can win. At this stage, it has not been confirmed by 
Conway who is to be the recipient of his prize 
offer, or whether each published and subsequent 
solution will also earn $100 US. 

Mathematics Research institutes in India 

Chennai Mathematical Institute  

Chennai Mathematical Institute is a centre 
of excellence for teaching and research in the 
mathematical sciences. It was founded in 1989 as a 
part of the SPIC Science Foundation, funded by the 
SPIC group in Chennai. Since 1996, it has been an 
autonomous institution. 

The research groups in Mathematics and 
Computer Science at CMI are among the best 
known in the country. Recently, a research group 
has also been set up in Physics. The Institute has 
nurtured an impressive collection of PhD students.  

The main areas of research in Mathematics 
pursued at the Institute are algebra, analysis, 
differential equations, geometry and topology. In 
Computer Science, the main areas of research are 
formal methods in the specification and 
verification of software systems, design and 
analysis of algorithms, computational complexity 
theory and computer security. In Physics, research 
is being carried out mainly in quantum field 
theory, mathematical physics and string theory.  

Harish-Chandra Research Institute  

The Harish-Chandra Research Institute 
(HRI) is an institution dedicated to research in 
mathematics, and in theoretical physics. It is 
located in Allahabad, India, and is funded by the 
Department of Atomic Energy, Government of 
India. 

Research at HRI is focussed on 
Mathematics and Theoretical Physics. The 
academic community at HRI consists of faculty 
members, post-doctoral fellows, and graduate 
students. 

The Institute has a graduate programme 
leading to the Ph.D. degree. Degrees for the 
programme are awarded by the Homi Bhabha 
National Institute. Admissions to the graduate 
program take place through a Joint Entrance 
Screening Test, which is organized in collaboration 
with several other institutions, and an interview. 
Further, the Institute offers post-doctoral 

fellowships, and visiting positions at various 
levels. 

Institute of Mathematical Sciences  

The Institute of Mathematical Sciences 
(IMSc), founded in 1962 and based in the verdant 
surroundings of the CIT campus in Chennai, is a 
national institution which promotes fundamental 
research in frontier disciplines of the mathematical 
and physical sciences: Theoretical Computer 
Science, Mathematics, Theoretical Physics, as well 
as in many interdisciplinary fields. Around a 
hundred researchers, including faculty members, 
post-doctoral fellows and graduate students, are 
members of the Institute at any given time, in 
addition to a large number of visitors from all over 
the world. 

Tata Institute of Fundamental Research  

The Tata Institute of Fundamental 

Research is a National Centre of the Government 

of India, under the umbrella of the Department of 

Atomic Energy, as well as a deemed University 

awarding degrees for master's and doctoral 

programs. At TIFR, we carry out basic research in 

physics, chemistry, biology, mathematics, 

computer science and science education. 

Kerala School of Mathematics  

Kerala School of Mathematics (KSOM), an 

institution meant for advanced learning and 

research in Mathematics, is a joint venture of 

Kerala State Council for Science, Technology and 

Environment (KSCSTE), Government of Kerala 

and Department of Atomic Energy (DAE), 

Government of India. It is built in the traditional 

Kerala style architecture and is located in a 

picturesque setting surrounded by serene hillocks 

and lavish greenery. It is at a distance of about 15 

km. from the seaside city Kozhikode in Malabar 

region of Kerala, India. 
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