SYLLABUS

POST GRADUATE DIPLOMA IN FERMENTATION TECHNOLOGY

(PGDFT)

2020-21 onwards

Since 1951

PG & Research Department of Biotechnology JAMAL MOHAMED COLLEGE (Autonomous)

College with Potential for Excellence
Accredited (3rd Cycle) with 'A' Grade by NAAC
DBT Star Scheme & DST-FIST Funded
(Affiliated to Bharathidasan University)
Tiruchirappalli – 620 020.

Post Graduate Diploma in Fermentation Technology (PGDFT) Course Pattern from 2020 - 2021

(COURSE DURATION: I YEAR)

SEM	Course Code	Course	Course Title	Hrs / Week	Credit	CIA Mark	SE Mark	Total Marks
	20PDFT1C1	Core I	Biomolecules and Microbial Biochemistry	6	4	25	75	100
	20PDFT1C2 Core II 20PDFT1C3 Core III		Biocatalysis and Biotransformations	6	4	25	75	100
I			Microbiology of Industrial Fermentation	6	4	25	75	100
	20PDFT1C4 Core IV Principles of Fermentation Technology					25	75	100
	20PDFT1C5/P Core V Enzymology & Fermentation - Practical					25	75	100
		TOTAL		30	20	125	375	500
	20PDFT2C1	Core VI	Bioseparations and Biological Techniques	6	4	25	75	100
	20PDFT2C2	Core VII	Animal and Plant Cell Bioprocesses	6	4	25	75	100
II	20PDFT2C3	Core VIII	Downstream Processes and Fermentation Economics	6	4	25	75	100
	20PDFT2C4	Core IX	Industrial Fermentation Processes	6	4	25	75	100
	20PDFT2C5/P	Core X	6	4	25	75	100	
		TOTAL	30	20	125	375	500	
	(GRAND TO	60	40	250	750	1000	

Programme Specific Outcome

At the end of the programme, students will be able to:

- Describe the basic concepts in biomolecules and microbial biochemistry.
- Explain the principles of fermentation technology, use of biocatalysts and biotransformation involved in the bioprocess.
- Illustrate the process of industrial fermentation, bio process of animal and plant cell and the role of enzymes in fermentation.
- Summarize the steps in downstream processing.
- Evaluate the cost-effective fermentation process and bioprocess in compliance with market demand.

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal marks	External marks
I	20PDFT1CC1	Core - I	BIOMOLECULES AND MICROBIAL BIOCHEMISTRY	6	4	100	25	75

At the end of the course, students will be able to:

- 1. Acquire the knowledge about classification, structure and properties of carbohydrates and lipids.
- 2. Describe the structure and functions of proteins and nucleic acids.
- 3. Illustrate the microbial metabolism related to carbohydrates.
- 4. Intellectual about the Biosynthesis of amino acids and fermentation processes.
- 5. Asses about prokaryotic and eukaryotic photosynthesis.

Unit I Carbohydrates:

18 hours

Classification, structure, general properties and functions of polysaccharides and carbohydrates; amino sugars, proteoglycans and glycoproteins. complex #Lipids:Classification, structure, properties and functions of fatty acids, essential fatty acids, phospholipids, sphingolipids, cerebrocides, steroids, bile prostaglandins#, lipoamino acids, lipoproteins, proteolipids, phosphatidopeptides, lipopolysaccharides.

Unit II Proteins: 18 hours

Primary (peptide conformation, N- and C- terminal, peptide cleavage), Secondary (α-helix, sheet, random coil, Ramachandran plot), Tertiary and Quaternary structures of proteins. #Nucleic acids:Nucleic acids as genetic information carriers, experimental evidence e.g., genetic transformation, Hershey-Chase experiments, action spectrum, etc#. Structure and function of nucleotides. Primary, secondary and tertiary structure of nucleic acids, DNA forms and conformations, Denaturation of DNA.

Unit III Microbial Metabolism:

18 hours

Glycolysis, Alernative pathways to Glycolysis-: Pentose phosphate pathway, Entner-Doundroff pathway, Aerobic respiration- Tricarboxylic acid cycle, #The Electron Transport chain#, The Chemiosmosis.

Unit IV Vitamins and Amino acid

18 hours

Anerobic respiration, Fermentation -lactic acid Alcohol, Mixed Acid, 2,3 butanediol, Propionic acid, Butyric acid., #Metabolic pathways of Energy Use: Gluconeogenesis, Biosynthesis of Lipid, Aminoacid – Arginine, valine, tryptophan#, histidine and methionine, catabolism of threonine, cysteine, tyrosine, tryptophan methionine, biosynthesis of Purine and Pyrimidine, Vitamins- water-soluble and lipid-soluble vitamins.

Unit V Microbial photosynthesis:

18 hours

prokaryotic and eukaryotic photosynthetic apparatus, photophosphorylation, light and dark, reaction, photorespiration, #Biological nitrogen fixation#, Biochemistry of nitrogen fixation.

Self-study portion

Text Books:

1. E.E Conn,P.K. Stumpf, G. Bruenimg and Ray H. Doi, Outlines of Biochemistry, John Wiley & sons. 1987.

2. Donald Voet and Judith G Voet. Fundamentals of Biochemistry, John Wiley & Sons, NY. 1999.

Books for Reference:

- 1. R.H. Garrett and C.M. Grisham. Biochemistry, 2nd edition, by Saunders College Publishing, NY. 1999.
- 2. David L. Nelson and M.M. Cox. Lehninger Principles of Biochemistry, 3rd edition, Maxmillan and Worth Publishers. 2000.
- 3. R.K.Murray, P.A.Hayes, D.K.Granner, P.A. Mayes and V.W. Rodwell. Harper's Biochemistry, 25th edition, Prentice Hall International. 2000.
- 4. L. Stryer. Biochemistry, 4th edition, W.H. Freeman & Co., NY.1995.

Web Sources

- 1. https://toxtutor.nlm.nih.gov/12-001.html
- 2. https://en.wikipedia.org/wiki/Biocatalysis_%26_Biotransformation

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester I	20	Code		Title of the Paper BIOMOLECULES AND MICROBIAL BIOCHEMISTRY				Hours 6	C	Credits 4	
Course Outcomes		Progr	amme Ou (POs)				rogramm	amme Specific Outcomes (PSOs)			
(COs)	PO	PO	PO3	PO	PO	PSO	PSO	PS O3	PSO 4	PSO	
CO1		2		4	<u>5</u> ✓	1 ✓	<u>2</u> ✓	U3 ✓	4	5	
CO2	✓		✓	✓	✓	✓	✓	✓	✓	✓	
CO3	~	✓	✓	✓	✓	✓	✓			✓	
CO4	~			✓			✓	✓		✓	
CO5	✓	✓	✓	✓	✓		✓	✓			
	Number of Matches= 36, Relationship: High										

Prepared by:

Checked by:

1. Dr. J. Sebastin Raj

Note:

1. Dr. T. Nargis Begum

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Cre dits	Max. Marks	Internal marks	External marks
I	20PDFT1CC2	Core - II	BIOCATALAYSIS AND BIOTRANSFORMATIONS	6	4	100	25	75

At the end of the course, students will be able to:

- 1. Knowledge of the fundamentals and applications of biocatalysis and enzymology.
- 2. Briefly introduce some advanced techniques involved in the extraction and utilization of enzymes in biotransformation.
- 3. Improving the performance of biocatalysts (evolutionary methods, pathway engineering) such as catalytic antibodies, nucleic acids as catalysts.
- 4. Identify enzymes of interest for target *biotransformations* by genome.
- 5. Define enzymes and its catalytic action, mechanism & kinetics with examples.

Unit I 18 hours

Catalysis, Biocatalysis, chemical nature of enzymes, characteristics - Enzyme Classification and nomenclature. General properties of enzymes like effect of pH, Temperature, Ions etc., #Extraction, assay and purification of enzymes#.

Unit II 18 hours

Mechanism of enzyme action – Energy mechanics. Enzyme Kinetics – MM hypothesis, Significance of Km and Vm values, Modifiers of Enzyme activity – #Reversible and Irreversible modifications#.

Unit III 18 hours

Enzyme assays – methods, isolated enzymes and cell – free preparations, Immobilization of enzymes, #industrial applications#.

Unit IV 18 hours

Microbial biodegradation – aerobic & Anaerobic biodegradation of organic pollutants, Bioremediation using extracellular electron transfer, #Bacterial degradation of xenobiotics#.

Unit V 18 hours

Oil biodegradation in marine systems – analysis of waste biotreatment in confined environments, #metabolic engineering and biocatalytic applications of the pollutant degradation machinery#.

Self-study portion

Text Books:

- 1. Charles R. Canter & Paul R. Schimmel., Biophysical Chemistry: Part I: The conformation of biological macromolecules by W.H. Freeman Publishers.2016.
- 2. David Freifelder., Biophysical Biochemistry, Applications to Biochemistry and Molecular Biology by W.H. Freeman Publishing Inc.2014
- 3. Glick and Pasternack., Molecular Biotechnology: Principles and Applications of Recombinant DNA Technology, ASM Press, 2009.

Books for Reference:

- 1. Malcolm Webb and Edwin C. Dixon, Enzymes, Academic Press, 2012.
- 2. Trevor Palmer, Understanding of Enzymes, Prentice Hall, 2001.

Web Source

- 1. https://toxtutor.nlm.nih.gov/12-001.html
- 2. https://en.wikipedia.org/wiki/Biocatalysis_%26_Biotransformation

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		7	Title of th	ne Paper		Hours	C	Credits	
I	20	PDFT1C	CC2			YSIS AND RMATION		6		4	
Course Outcomes		Progra	amme Ou (POs)	itcomes	mes Programme Specific Outcomes (PSOs)						
(COs)	PO 1	PO 2	PO3	PO 4	PO 5	PSO 1	PSO 2	PS O3	PSO 4	PSO 5	
CO1		✓		✓	<i>√</i>	1 ✓	✓	√			
CO2	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
CO3	✓	✓		✓	✓	✓	✓			✓	
CO4	√	✓	✓	✓			✓	✓		✓	
CO5	✓	✓	✓	✓	✓		✓	✓			
	Number of Matches= 36, Relationship: High										

Prepared by:1. H.F.Seyed Mafiya Haniff

Checked by:

1.Dr. B. Nazeema Banu

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Cre dits	Max. Marks	Internal marks	External marks
I	20PDFT1CC3	Core -	MICROBIOLOGY	6	4	100	25	75
		III	OF INDUSTRIAL					
			FERMENTATION					

At the end of the course, students will be able to:

- 1. Understand the concept of microbial fermentation and the importance of microbes in the production of industrially important products.
- 2. Design a suitable nutrition medium for growing various industrially important microbes
- 3. Gain knowledge on principles of sterilization and microbial control.
- 4. Get expertise in Primary and secondary metabolite production.
- 5. Understand the concept of cell immobilization and effluent treatment in industry

Unit I 18 hours

Introduction to microbiology, Microscopy, General structural organization, function and reproduction of bacteria, algae and fungus. Isolation, cultivation and identification of bacteria. #Microbial growth, culture media, pure culture techniques#. Measurement of microbial growth.

Unit II 18 hours

Microbial Nutrition - Nutritional requirements, nutritional types of microorganisms. #Effect of environment on microbial growth#.

Unit III 18 hours

Principles of sterilization and disinfection. Physical and chemical methods of microbial control. Maintenance and preservation of microorganism, Antimicrobial agent and resistant mechanisms. #Bacterial spores#.

Unit IV 18 hours

Primary and secondary metabolites – Organic feed stocks, organic acids, amino acids, enzymes, #nucleosides, nucleotides and related compounds#, vitamins and antibiotics.

Unit V 18 hours

Cell immobilization, microbial transformation, single cell protein, sewage treatment, biosensor, bioleaching and effluent treatment, #GMO's#.

Self-study portion

Text Books:

- 1. J.G. Black. Microbiology Principles and Explorations, 6th edition, John Wiley and Sons Inc., 2005.
- 2. M. Pelczar, J.Jr. Chan E.C.S., Kreig, Microbiology,5th edition ,Tata McGraw Hill, 2006.
- 3. J.J. Perry, J.T. Staley, S.Lory. Microbial life, 1St edition, Sinauer Associates Publishers, 2002.

Books for Reference:

- 1. L.M.Prescott, J.P.Harley, D.A. Klein, Microbiology, 1st edition, McGraw Hill, 2007.
- 2. Tortora, Funke, Case. Microbiology An Introduction, 3rdedition,Benjamin-Cummings Publications, 2004.

Web Source

- 1. http://www.biologydiscussion.com/industrial-microbiology-2/industrial-fermentation-processes-microbiology/55742
- 2. https://www.generalmicroscience.com/industrial-microbiology/types-of-fermentation-processes/
- 3. https://nptel.ac.in/courses/102/105/102105058/

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester I	2	Code 20PDFT1CC3			Title of the Paper MICROBIOLOGY OF INDUSTRIAL			Hours 6		(Credits 4
				F	ERMEN'	TATION					
	I	Program	me Outco	omes (POs) Programm				e Sp	ecific O	utcomes	(PSOs)
Course Outcomes	PO	PO	PO3	PO	PO	PSO	PS	SO	PS	PSO	PSO
(COs)	1	2		4	5	1		2	O3	4	5
CO1	√	✓	✓	✓	✓	√			✓	✓	✓
CO2	√	√	√	√			√		√	√	√
CO3	√	√	√	√			√		√	√	√
CO4	√	√	√	√		√	✓ ✓				√
CO5	√	√	√	√	√				√	√	√
	Number of Matches= 41, Relationship: High										

Prepared by:

1. Dr. B. Nazeema Banu

Checked by:

1. Dr. Y. Arsia Tarnam

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Cre dits	Max. Marks	Internal marks	External marks
I	20PDFT1CC4	Core - IV	PRINCIPLES OF FERMENTATION TECHNOLOGY	6	4	100	25	75

At the end of the course, students will be able to:

- 1. Understand the concept of microbial growth kinetics and mode of operation of fermentors.
- 2. Design a suitable Industrial medium for growing various microbes and strain improvement strategies.
- 3. Gain knowledge on Fermenter design and its types.
- 4. Get expertise in control parameters in a fermentor.
- 5. Understand the role of computers in a fermentation industry.

Unit I 18 hours

Major types of organisms used in fermentation, Microbial growth kinetics, #Batch culture, Continuous Culture, Fed – Batch – Types#, applications, fermentation kinetics.

Unit II 18 hours

Isolation, preservation and improvement of industrially important microorganisms, Media for industrial fermentations – media formulation, #Development of inoculum for industrial fermentations#.

Unit III 18 hours

Fermenter design and types-basic functions of a fermenter for microbial and animal cell culture – alternative vessel design, common measurements and control systems. #Sensors – solutions to common problems in fermentation#, anaerobic fermentation.

Unit IV 18 hours

Control of fermentation – requirements for control, design of a fermentation control systems, sensors and controllers, control of incubation, *aeration and agitation*#.

Unit V 18 hours

Computers in fermentation, modeling, software sensors, control and supervision of fermentation processes – #off-line / online measurements – PID#.

Self-study portion

Text Books:

- **1.** Arnold L. Demain and Julian E. Davis, Industrial Microbiology & Biotechnology, 2nd edition, ASM Press, 2004.
- **2.** J.M. Coulson, and J.F. Richardson, Chemical Engineering, 6th Edition, Mc Graw Hill Publication, 1999.

Books for Reference:

- 1. Emt.el-Mansi and Bryce, Fermentation Microbiology & Biotechnology, 2nd edition, Taylor & Francis Ltd, 2004.
- 2. P.F.Stanbury, A. Whitaker & S.J. Hall, Principles of fermentation technology, Oxford Press, 2014.

Web Source

- 1. https://nptel.ac.in/courses/102/105/102105058/
- 2. https://swayam.gov.in/nd1_noc19_bt20/preview

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester I	20	Code	C4	Title of the Paper PRINCIPLES OF FERMENTATION TECHNOLOGY			TION		Hours 6		Credits 4	
Course Outcomes		Progra	nmme Ou (POs)	tcomes		Programme Specific Outcomes (PSOs)						
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PS	O2	PSO3	PSO4	PSO5	
CO1	√	√	√	√			√		√	√	√	
CO2	√	√	√	√	√	√	√		√	√	√	
CO3	√	√	√	√					√	√	√	
CO4	✓	√			√		√	√	√			
CO5	√	√	√	√		√			√	√	√	
	Number of Matches= 41, Relationship: High											

Prepared by:

1. Dr. B. Nazeema Banu

Checked by:

1. Dr. K. Gobalan

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Cre dits	Max. Marks	Internal marks	External marks
I	20PDFT1CC5P	Core - V	MICROBIOLOGY, ENZYMOLGY AND FERMENTATION - PRACTICAL	6	4	100	20	80

At the end of the course, students will be able to:

- 1. Design a suitable nutrition medium for growing various industrially important microbes
- 2. Understand the concept of microbial fermentation and the importance of microbes in the production of industrially important products.
- 3. Gain knowledge on principles of sterilization and microbial control.
- 4. Get expertise in Primary and secondary metabolite production.
- 5. Understand the concept of cell immobilization and effluent treatment in industry

List of Practicals:

- 1. Media preparation, Sterilization.
- 2. Culture transfer techniques, Isolation of pure cultures.
- 3. Microbial isolation and screening.
- 4. Bacterial staining.
- 5. Bacterial growth curve studies.
- 6. Isolation of Antibiotic producing organism.
- 7. Extracellular activities of microorganisms- amylase, gelatinase, lipase, caseinase.
- 8. Qualitative study of enzyme activity.
- 9. Effect of pH, Temperature, Substrates, Inhibitor on enzyme activity
- 10. Enzyme kinetics Km, Vmax, Specific activity and activity determination.
- 11. Structure of Fermenter, cleaning of Fermenter, Assembling and final pre-sterilization of Fermenter, Anatomy and calibration of fermenter electrodes / probes, Post sterilization procedures, Aseptic techniques in inoculation of fermentors.
- 12. Aseptic sampling from fermentors.
- 13. Techniques to determine microbial contaminations.
- 14. Trouble shooting and diagnostics.

Text Books:

- 1. J. G. Cappuccino, and N. Sherman, Microbiology-A laboratory manual, 2nd edition, Pearson Education, 2004
- 2. S. Ignacimuthu, Applied Plant Biotechnology,1stedition, Mc Graw Hill publications Co. Ltd, 1996.

Books for Reference:

1. Rodney Boyer, An Introduction to Practical Biochemistry, 2nd edition, Pearson Education, 2003.

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester I	20	Code		Title of the Paper MICROBIOLOGY, ENZYMOLGY AND FERMENTATION - PRACTICAL				Hours 6		Credits 4
Course Outcomes		Progr	ramme Ot (POs)	tcomes Progra				ne Specif (PSOs	nes	
(COs)						PSO	PSO			
	1	2		4	5	1	2	O3	4	5
CO1	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
CO2	√	√	√	√		√		√	√	√
CO3	√	√	√	√		√		√	√	√
CO4	√	√	√	√		√	√	√	√	√
CO5	√	√	√	√	√	√		√	√	√
	•	N	umber of	Matche	es= 44,	Relations	ship : F	ligh	•	•

Prepared by:
1. Dr. B. Nazeema Banu

Checked by:
1. Dr. S. Benazir Begum

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal marks	Exter nal marks
II	20PDFT2CC6	Core - VI	BIOSEPARATIONS AND BIOLOGICAL TECHNIQUES	6	4	100	25	75

At the end of the course, students will be able to:

- 1. Define advanced downstream processing methods for product recovery.
- 2. Describe the components of downstream equipment and to understand the requirements for successful operations.
- 3. Enhance problem solving techniques required in multi-factorial manufacturing environment in a structured and logical fashion.
- 4. Understand the methods to obtain pure proteins, enzymes and in general about product development research and development.
- 5. Have depth knowledge and hands on experience on Downstream processes to commercial therapeutically important proteins.

Unit I 18 hours

Bioseparation and Scope - General laboratory procedures: lab safety, note books and reports, cleaning of glasswares, preparation and storage of solutions. pH, Buffers, Electrodes and Biosensors, Measurement of Protein, Nucleic acid solutions. #Chromatography – Principle, operative technique and applications of paper, TLC, adsorption chromatography, GLC, and HPLC#. Ion-Exchange, molecular sieve.

Unit II 18 hours

Electrophoretic techniques - Principle and technique of gel, SDS, high voltage and discontinuous electrophoresis, Isoelectric focussing. #Pulsed field gel electrophoresis and capillary electrophoresis#.

Unit III 18 hours

Spectrophotometry- Basic principles, instrumentation and applications of UV, Visible, IR spectrophotometers and Mass Spectrometry. #Flame Photometry - Principles and applications#.

Unit IV 18 hours

Solid removal operationsCentrifugation techniques – #Principle, methodology and application of analytical centrifugation#, differential centrifugation, density gradient centrifugation, ultracentrifuge.

Unit V 18 hours

X-Rays - X-Ray diffraction, crystals and detectors, quantitative analysis and applications. Radio chemical methods - Basic concepts, counting methods and applications. Autoradiography. #Tracer techniques- radioactive decay, units of radioactivity, detection and measurement of radio activity, Geiger-Muller counter, Scintillation counter#. Applications of radioisotopes in biology.

Text Books:

- 1. R.Boyer, Modern Experimental Biochemistry, 3rd edition, Addison-Wesley Longman.2002.
- 2. David Plummer. Practical Biochemistry, Tata Mc-Graw Hill.1990.
- 3. J. Jayaraman, A Lab. Manual in Biochemistry New Age International (P) Ltd.1996.

Books for Reference:

- 1. Sadasivam& Manickam. Biochemical Methods New Age International (P) Ltd.,1996.
- 2. Sawhney, S.K., & R. Singh. Introductory Practical Biochemistry, Narosa Publishers. 2000.

Web Source

- 1. https://www.chromatographytoday.com/news/ -bioseparations/34425
- 2. https://www.sciencedirect.com/topics/medicine-and-dentistry/bioseparation

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code			Title of	the Paper		Hours	(Credits		
II	20)PDFT2(CC6			ATIONS A TECHNIO		6		4		
Course	Programme Outcor			omes (POs) Programme Sp				pecific Outcomes (PSOs				
Outcomes	РО	РО	PO3	PO	PO	PSO	PSO	O PS PSO				
(COs)	1	2		4	5	1	2	O3	4	5		
CO1	~			/	~	~	✓	~	~	~		
CO2	~	~	v	~	~	~		v	V			
CO3		~	/	~	~					~		
CO4		~	V	~		~		~		V		
CO5	~	~	V	~	~	~			V	V		
	'	N	umber of	Matche	es= 35,	Relations	hip : H	igh				

Prepared by:

Checked by:

1. H.F. Seyed Mafiya Haniff

1. Dr. S. Benazir Begum

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Cour se	Title of the Course	Ho urs	Credi ts	Max. Mark s	Intern al marks	External marks
П	20PDFT2CC7	Core - VII	ANIMAL AND PLANT CELL BIOPROCESSES	6	4	100	25	75

At the end of the course, students will be able to:

- 1. Explain the basic concepts in mammalian bioprocess.
- 2. Describe the principles and techniques involved in plant cell culture
- 3. Illustrate the process of fermentation technology.
- 4. Demonstrate the applications of fermentation technology.
- 5. Summarize the bioprocess of plant, animal and insects and their application in various fields.

Unit I 18 hours

Introduction to mammalian cell culture – mammalian cell characteristics, growth kinetics, metabolism, bioreactors for mammalian cell culture, process monitoring and control. #Equipments and requirements for animal cell culture technology, Introduction to balanced salt solution, and simple growth medium, chemical, physical and metabolic functions of different constituents of culture medium#. Role of CO₂ and supplements, serum and protein free defined media.

Unit II 18 hours

Plant cell culture – Introduction, culture media – micronutrients, carbon sources, vitamins, pH, plant growth regulators. medium preparation, Facilities – sterile transfer facilities, temperature, light, aeration. culture initiation, - sterile explants, callus cultureintiation, suspension culture, bioreactors and scale – up.#Growth quantitation – fresh weight, dry weight, packed cell volume, indirect measurement, viability assays, secondary metabolite production, Regeneration, micropropagation, and transformation#.

Unit III 18 hours

Insect cell culture, culture techniques – media preparation, Flasks and roller bottles, shakers and spinner flasks, stirred tank reactors, airlift fermenters, fed batch culture, MOI and infectivity, recovery of insect cells, protein expression using stable cell lines. #Process issues in large – scale mammalian and insect cell culture, tissue engineering and cell therapy#.

Unit IV 18 hours

Plant secondary metabolites production: cell culture, hairy root culture, Ri plasmid, #control mechanism and maintenance of phenyl propanoid pathway, alkaloids, flavonoids, phenols#.

Unit V 18 hours

Nuclear transplantation, therapeutic transplantation, transfection methods- lipofection, electroporation, microinjection, embryonic stem cell transfer, targeted gene transfer, #hybridoma technology and production of monoclonal antibodies, stem cells – embryonic & adult stem cells, and potent uses of human stem cells#.

Self-study portion

Text Books:

- 1. Bernard R. Glick and Jack J. Pasternak, Molecular Biotechnology, Panima Publishing House, New Delhi.2002.
- 2. S.S. Bhojwani and M.K. Razdan., Plant Tissue culture: theory and practice a revised edition, Elsevier science.2004.
- 3. J.W. Goding. Monoclonal Antibodies: Principles and Practice, Academic Press.1983.

Books for Reference:

- 1. J.R.W. Masters. Animal Cell culture, Oxford University Press,2015.
- 2. M.M. Ranga. Animal Biotechnology, Student Edition, Jodhpur, 2013.
- 3. T. A. Springer. Hybridoma Technology in Biosciences and Medicine, Plenum Press, New York, 2016.

Web Source

1. https://link.springer.com/chapter/10.1007%2F978-3-540-68182

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code	e		Title of t	he Paper		Hours	(Credits	
II	2	0PDFT2	CC7		ANIMAL AND PLANT CELL BIOPROCESSES				LL 6 4		
Course	I	Programme Outcomes (POs) Programme Specific Outcomes (PSOs									
Outcomes	PO	PO	PO3	PO	PO	PSO	PSO	PS	PSO	PSO	
(COs)	1	2		4	5	1	2	O3	4	5	
CO1	/		~			~	~	'			
CO2	~	/	~	/	/	~		'			
CO3	/	'	~	'		~	~	'	'		
CO4		/	~	/	/	~	~	'	~	'	
CO5	1	/	1	/	/	/	/	~	/	~	

Prepared by:

1. Dr. B. Nazeema Banu.

Checked by:

1. H.F. Seyed Mafia Haniff

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal marks	External marks
П	20PDFT2CC8	Core - VIII	DOWNSTREAM PROCESSES AND FERMENTATION ECONOMICS	6	4	100	25	75

At the end of the course, students will be able to:

- 1. Demonstrate the basics of biochemistry.
- 2. Analyse the principle and mechanism of fermentation technology.
- 3. Discuss the techniques and tools in the process of fermentation.
- 4. Explain the steps involved in downstream processing.
- 5. Employ the economical fermentation process in compliance with market demand.

Unit I 18 hours

Introduction to recovery and purification of fermentation products, removal of microbial cells and other solid matters. #Foam separation#.

Unit II 18 hours

Filtration – theory. Use of filter aids – batch filters, continuous filters. Centrifugation. Cell aggregation and flocculation. Cell disruptions – physical, chemical, mechanical, liquid – liquid extraction. #Solvent recovery, two-phase aqueous extraction, super critical fluid extraction#.

Unit III 18 hours

Techniques inChromatography for downstream processing – adsorption, affinity, ion-exchange, gel permeation, reverse phase chromatography, HPLC, #ultrafiltration, reverse osmosis, dyring, crystallization, whole broth processing#.

Unit IV 18 hours

Effluent Treatment - dissolved oxygen concentration, strengths of fermentation effluents, #treatment and disposal of effluents, by-products#.

Unit V 18 hours

Fermentation economics – discovery and process development, strain improvement, market potential, plant and equipment, operating cost, contract manufacturing, return on investment – recovery cost. #Water usage and recycling and effluent treatment#.

Self-study portion

Text Books:

- 1. Arnold L. demain& Julian E. Davis. Industrial Microbiology & Biotechnology, ASM Press.2004.
- 2. J.M. Coulson and J.F. Richardson. Chemical Engineering, Pergamon Press.1984.

Books for Reference:

- 1. Mansi &C.F.A.Bryce. Fermentation Microbiology &Biotechnology, Taylor& Francis Ltd.,2004.
- 2. P.F. A.Stanbury and Whitaker S.J. Hall. Principles of fermentation technology Oxford.1997.

Web Source

1. https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/downstream-processing

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

	Code	:		Title o	of the Pape	r	Но	urs	Credits	
20	0PDFT20	CC8		DOWNSTREAM PROCESSES AND FERMENTATION ECONOMICS					4	
F								outcomes	(PSOs)	
PO	PO	PO3	PO	PO	PSO	PSO	PS	PSO	PSO	
1	2		4	5	1	2	O3	4	5	
>		~	'	/	~	~			~	
/	'	~		'	~	~	'	~		
	'	'	'	~	~	~	'	V	/	
	'				~		'	~		
>	'	/	'	~		'	/	'	'	
	PO 1	Program PO PO 1 2 V V V	Programme Outco	Programme Outcomes (Port of the program of the prog	20PDFT2CC8	20PDFT2CC8	20PDFT2CC8	20PDFT2CC8	20PDFT2CC8	

Prepared by:

Checked by:

1. Dr. S. Benazir Begum

1. H,F.Seyed Mafiya Haniff.

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Cre dits	Max. Marks	Internal marks	External marks
П	20PDFT2CC9	Core - IX	INDUSTRIAL FERMENTATION PROCESSES	6	4	100	25	75

At the end of the course, students will be able to:

- 1. Explain the basic concepts in biomolecules and microbial biochemistry.
- 2. Elucidate the potential scientific consequences of industrial fermentation products.
- 3. Describe the principles and uses of fermentation technology.
- 4. Illustrate the process and applications of industrial fermentation.
- 5. Implicate the cost-effective fermentation process for a variety of industrial applications.

Unit I 18 hours

Enzyme production – amylase, glucose isomerases, asparaginase, proteases, rennin, pectinases, lipases, penicillin acylase. #Enzyme & cell immobilization#.

Unit II 18 hours

Vitamins & Antibiotics – vitamin B12, riboflavin, β carotene, β –lactam antibiotics, amino acids and peptide antibiotics, carbohydrate antibiotics, macro lactone antibiotics, #tetracyclines and anthracyclines#, nucleoside antibiotics & aromatic antibiotics.

Unit III 18 hours

Organic acids and Feed stocks – citric acids, gluconic acids, acetic acids, lactic acids, kojic acids, #Itaconic acids – ethanol, glycerol, butanol, acetone, fermentation#.

Unit IV 18 hours

Amino acids – glutamic acid, lysine, tryptophan, structure and biosynthesis of nucleotides, #nucleosides and related compounds#.

Unit V 18 hours

Ergot alkaloids – significance and occurrence, structure, biosynthesis, strain development, production.microbial transformations – types, applications - antibiotics, #pesticides, non-steroid compounds, steroils and steroids#.

Self-study portion

Text Books:

- 1. Arnold L. Demainand Julian E. Davis., Industrial Microbiology & Biotechnology ASM Press. 2004.
- 2. J.M. Coulson and J.F. Richardson. Chemical Engineering, Pergamon Press, 2014.

Books for Reference:

- 1. Mansi and C. F. A. Bryce.Fermentation Microbiology and Biotechnology, Taylor & Francis Ltd. 2004.
- 2. P.F. A.Stanbury and Whitaker S.J. Hall. Principles of fermentation technology Oxford.1997.

Web Source

- 1. https://en.wikipedia.org/wiki/Industrial_fermentation
- 2. https://www.massey.ac.nz/~ychisti/FermentInd.PDF

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester	Code Title o			Title of t	he Paper Hours		(Credits			
II	2	0PDFT20	CC9	INDUSTRIAL 6 FERMENTATION PROCESSES						4	
Course Outcomes	Programme Outcomes Programme Specific Outcome (POs) (PSOs)								nes		
(COs)	PO	PO	PO3	PO	PO	PSO	PSO	PS	PSO	PSO	
, ,	1	2		4	5	1	2	O3	4	5	
CO1	'		'	V	'	'		V	'	V	
CO2	/	~	~		/	~	~	'		'	
CO3	~		~	/		~	~	'	~	'	
CO4	'	'		/	/	'	~	'	~		
CO5	/	1	1		/		/	/		/	

Prepared by:

1.Dr. B. Nazeema Banu

Checked by:

1. H.F. Seyed Mafiya Haniff.

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal marks	External marks
II	20PDFT2CC10P	Core -X	BIOPROCESS - PRACTICAL	6	4	100	20	80

At the end of the course, students will be able to:

- 1. Demonstrate the basic concepts of bioprocess technology.
- 2. Apply skill to perform laboratory scale fermentation.
- 3. Illustrate the process of industrial fermentation.
- 4. Explain downstream processing with enzymes.
- 5. Demonstrate the production of several fermentation products.

List of Practicals:

- 1. Introduction to bioprocess technology parts and designs of bioreactors.
- 2. Production of biomass: batch and continuous fed batch fermentation.
- 3. Recovery of products.
- 4. Laboratory scale fermentation of antibiotics, immobilization of cells and enzymes.
- 5. Down Stream Processing with an extra cellular enzyme.
- 6. Beer or Wine Production and Quality Assessment.
- 7. Citric Acid Production and Quantification.

Text Books:

- 1. Arnold L. Demain and Julian E. Davis. Industrial Microbiology & Biotechnology ASM Press.2004.
- 2. J.M. Coulson, and J.F. Richardson, Chemical Engineering, Pergamon Press, 2014.

Books for Reference:

- 1. Mansi and C.F.A. Bryce., Fermentation Microbiology and Biotechnology, Taylor & Francis Ltd..2004.
- 2. P.F. A.Stanbury and Whitaker S.J. Hall. Principles of Fermentation Technology Oxford, 2015.

Web Source

- 1. https://iubmb.onlinelibrary.wiley.com/doi/full/10.1002/bmb.20860
- 2. https://www.nap.edu/read/2052/chapter/3

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester	Code Title of the Paper Ho							Hours	ours Credits		
II	20	PDFT2C	C10P	BIOPR	OCESS -	PRACTIO	CAL	6		4	
Course Outcomes		Progr	ramme Ou (POs)			Programme Specific Outcomes (PSOs)					
(COs)	PO 1	PO 2	PO3	PO 4	PO 5	PSO 1	PSO 2	PS O3	PSO 4	PSO 5	
CO1	'		'		/	'	'	~	~	~	
CO2	'	~	~	~	/	~	'	V		~	
CO3	'	'	~	'	~	~	'	V	~		
CO4	'	/	~		/	~	'		~		
CO5	'	~		~		~	'	V		~	
	I	N	lumber of	Matche	es= 40,	Relations	ship : H	ligh	•	1	

Prepared by:

1. Dr. S. Benazir Begum

Checked by:

1. H.F.Seyed Mafiya Haniff.

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high
