UINTT 1
" DIVIDE AND CONQUER

Prepared By

J.Sahitha Banu

 Assistant Professor

I — D-',)Jrrm—*nr of Computer science& IT

Jamal Mohamead College,Irichy

General method

* Divide and Conquer is an algorithmic pattern.

 Divide and conquer algorithm Is a strategy of solving a large
problem by

1.breaking the problem into smaller sub-problems
2.solving the sub-problems, and

3.combining them to get the desired output.

« Here are the steps involved:

1.Divide: Divide the given problem into sub-problems using
recursion.

2.Conquer: Solve the smaller sub-problems recursively. If the
subproblem Is small enough, then solve it directly.

3.Combine: Comblne the solutlons of the sub -problems that are

problem

solve
subproblem

solve

conquer
49 subproblem

combine

solution to
problem

Divide-and-Conquer R

€ A general methodology for using
recursion to design efficient algorithms

@ |t solves a problem by:
— Diving the data into parts
— Finding sub solutions for each of the parts

— Constructing the final answer from the sub
solutions

1 Clip sli
THE DIVIDE AND CONQUER

ALGORITHM

Divide Conguer (problem P)

|
if Small (P) return S(P) ;

else {

divide P into smaller instances P, P, ...
P, k=1;

ﬂpplg Divide Congquer to each of these
subproblems; o

return Combine (Divide Conqgque (P,) .,
Divide Congue (P,),.., Divide Congue (F,)) ;

}

* The Divide and Conquer algorithm is initially invoked as DAndC(P) where P
is the problem to be solved.

* Small(P) is a Boolean valued function that determine whether the input size
is small and answer can be computed with out splitting.

* If this is so then the function S is called.
e Otherwise P is divided in to smaller subproblem:s.
* The subproblems P1,P2.... Are solved by recursive applications of DAndC.

* Combine is a function that determines the solutions to P using the
solutions to k subproblems.

* The computing time is described by recurrence relation

T(n)={ g(n) n small
T(n1)+T(n2).....4+4T(nk)+f(n) Otherwise

* Where T(n)is the time for DAndC on any input of size n and g(n) is the time to
compute for small inputs

* The function f(n) is the time to divide P and combining the solutions to sub
problems

* The time complexity to solve such problems is given by a recurrence relation: —
*T(n)=T(1) n=1
aT(n/b)+f(n) n>1

- Time to combine the solutions of the subproblems into a solution of the original
problem.

e Where a and b are constants.
* The method to solve such recurrence relation is called the substitution method.

* This method repeatedly makes substitution for each occurrence until all
occurrence disappear.

Example 3.1 Consider the case in which a = 2 and b = 2. Let T(1) = 2

and f{n) = n. We have
Tin) 2T(n/2) +n

22T(nf4) +n/2] +n

AT (nf4) + 2n

42T (n/8) + n/4] + 2n

8T (n/8) + dn

[n general, we see that T(n) = 2'T(n/2") + in, for any log,n =i > 1. In
particular, then, T(n) = 219822 (5 /29€2") & nlog, n, corresponding to the
*hoice of i = logyn. Thus, T(n) = nT(1) + nlogy n = nlog,n + 2n. O

Defective chess board problem

The Defective Chessboard problem, also known as the Tiling Problem is an
Interesting problem.

It is typically solved with a “divide and conquer” approach.

The algorithm has a time complexity of O(n?).
A defective chess board is a 2*k*2”k board of squares with exactly one defective

square.
“- B B B

As the Size of these chessboards displayed here, Ix] and 2x2 we don™ have to place any L-shape tile in the first ang
rest can be filled by just using ! L-shaped ule.

When k=0,there is one possible defective chess board.
For any k there are exactly 22k defective chess boards.

The problem

« Given a n by n board where n is of form 2k where k >= 1 (Basically, n is a power of
2 with minimum value as 2).

« We are required to tile the board using triominos. A triomino is an L-shaped tile in a
2 % 2 block with one cell of size 1x1 missing.

Constraints

1.Tiling two triominoes may not overlap.

2.Triminoes should not cover defective square

3.Triominoes should cover all other squares.

So the number of triominoes used becomes (2" 2k-1)/3.

When k=0 it has no defective square and number of triominoes is 0.

When k=1, there are exactly three non defective squares and these squares are
covered using a triomino as shown already.

The Algorithm

* As rbr?entioned earlier, a divide-and-conquer (DAC) technique is used to solve the
problem.

 DAC entalls splitting a larger problem into sub-problems, ensuring that each sub-
problem is an exact copy of the larger one.

-
-
-
-
-
-
-
-

DD RS
KR K KN RN
e
DD
KKK KN KRS
DK RN
KKK EIEEEE

The method suggests reducing the problem of tiling a 22k*2k defective chess
board to that of tiling smaller defective chess boards.

A natural partitioning of a 2*k*2/k chess board would be in to four 22k-1*2/k-1

chessboards

\ 22
22

o m

2x2

The above partitioning can be done when k=2.

ALGORITHIM

|. For a 2x2 board with defecuve cell we just need to
add the single ule to it.

2. We will place a L shape tile in the middle such that
it does not cover the sub square in which there 1s
already defective. All the cell have a defective cell.

3.Repeat this process recursively till we have a 2x2
board.

min

The recursion terminates when the chess board size has been reduced to 1*1.

The chess board’s only square is defective and no triminoes are to be placed.
Consider the divide and conquer alg.

Small(P) is true when k=0(we are dealing with 1*1 defective chess
board);dividing P into smaller instances is done by dividing P in to 2/k-1*2/k-

1.;combine the solutions obtained recursively for the four smaller requires no
additional work.

The alg. Uses two global variable board and tile.

board is a two dimensional array that represents a chess board.
board[0,0] represents the top left corner of chess board.

tile is a integer value with initial value 1
Initial invocation is TileBoard(0,0,dRow,dCol,Size)

Step- 3 Trick to cover the chess Step-4 Again creation of defective boxes
board with tiles as we divide the chess board
/ DIVISION OF

PROBLEM INTOSUB
Creation of defective box PRORI FM

Step-5 As we have finally Step-6 The procedure will
divided the problem into 2x2 continue until all the sub board
board we will put the tiles. are covered with the tiles.

Time complexity
t(k)= d k=0
4t(k-1)+c k>0
When k=0 size =1 and a constant d amount of time is spent.

When k>0 four recursive calls are made.The call take 4t(k-1) time.
We solve this by using substitution method.
t(k)=0(4"k)
=0(number of tiles needed)

O(1) time needed to place each tile and we cannot obtain an
asymptotically faster alg than divide and conquer.

Step-7 The final chess board covered Step-7 Here we will cover the

with all the titles and only left with the defectives which we have created as in
defectives which we created, the last, there should be only one
defective left.

COMBINIG OF ALL SUB
PROBLENIS

Binary Search
Let a, 1<=i<=n be a list of elements that are sorted in non decreasing order.

The problem is determining whether a element is present in the list or not.
If X is present we are to determine a value j such that a =x.

If x is not present the j is set with O. J

Divide and conquer is used to solve the problem.

Let P=(n,ai,....... al,x) denote a arbitrary instance of this search problem.

Let Small(P) be true if n=1.

In this case S(P) will take the value | if x=a, otherwise it is O.

If P has more than one element then it is divided in to new sub problems as follows.
Pick an index ¢ (in the range [i,I] and compare x with a

There are three possibilities.

1.x=a, the problem P is immediately solved

%.x)<aq; then x to be searched in the sublist ai,ai+1.....a,-1. Therefore p reduces to (g-1, ai,ai+1.....a,-
,X

3.x>a, then x to be searched in the sublist a +1,......al. P reduces to (I-q,aq+1....al,x)

The given problem reduced to two sub problems and it take O(1) time.

After a comparison with a,, the instance remaining to be solved using divide
and conquer again.

If g is always chosen such that a is the middle element (gq=[n+1/2]) then the
resulting search algorithm is known as binary search.

The answer to the new sub problem is also the problem to the original
problem.

1 Algorithm BinSrchia,di, !, x)

2 A4 Given an array ali @ 1] of elements in nondecreasing
3 S/ order, 1 < 1 < [, determine whether @ is present, and
4 S if so, return § such that » = alj]; else return O.

5

6 if ({ = i) then [,/ If Small{f)

-

8 if (o = ali]) then return i;

0 else return ;

10 }

11 else

12 { // Reduce P into a smaller subproblem.

13 mdd = (£ = 1)/ 2];

14 if (@ = a[mid]) then return mid;

15 else if (r < a[mid]) then

16 return BinSrchia, @, rmdd 1,x)s

17 else return BinSrchia, rmid + 1,1,)3

18 ¥

19 }

Algorithm 3.2 Hecursive binary search

1 Algorithm BinSearch{a, n,x)

2 J/ Given an array a[l : n] of elements in nondecreasing
3 /) order, n = 0, determine whether r is present, and
4 /[if s0, return § such that = = alj]; else return 0.

5 A

it loni = 13 high = ny

7 while (low < high) do

8 {

) mid := |(low + high)/2];

10 if (& < ﬂimicﬂ} then high := mid — 13

11 else if (xr > a[mid]) then low = mid + 1;
12 else return mad;

13 }

14 return 0

15 }

Algorithm 3.3 [terative binary search

Example 3.6 Let us select the 14 entries
—15,-—-6, 0, 7,9, 23, 54, 8§82, 101, 112, 125, 131, 142 151

place them in all @ 14], and simulate the steps that BinSearch goes through
as it searches for different values of . Only the variables low, high, and
rreied e to be traced as we simulate the algorithm. We try the following
values for x: 151, — 14, and 9 for two successful searches and one unsuccessful

search. Table 3.2 shows the traces of BinSearch on these three inputs. -
= Ikl lowe high Fresed F = —l4 fowr Medgh Fre£ed
| 14 Fi I 14 T
& 14 1L I i 3
|2 14 133 I 2 1
14 14 14 2z 2 2
found . I not found
o= 4 Fior fragh rradal
1 14 7
1 LE 3
4 G 0
fonmd

Table 3.2 Three examples of binary search on 14 elements

Comparisons between x and a[] are referred as element comparisons.

The number of comparisons needed to find each of the 14 element is

: RN R R RO
Elements: e = 0O T % & o § [l U [& 14 4 Ll
LAmparisang: { Y o+ 4 ¢ 1 4 | !]] i !

The average is obtained by summing the comparisons needed to find all items
and dividing by 14

45/14=3.21 comparisons per successful search.

The average number of element comparisons for unsuccessful search is
(3+14 *4)/15=3.93

For a successful search the time complexity is O(log n)
For unsuccessful search the time complexity is ©(log n)

Computing time of binary search algorithm for best, average and worst
case is

For successful search
©(1)-best case
O©(log n)-average case
©(log n)-worst case
For unsuccessful search
©(log n)- for best,average and worst case

Finding the maximum and minimum

|. Let us consider simple problem that can be solved by the divide-and conguer technigue.

2. The problem is to find the maximum and minimum value in a set of 'n’ elements.

3. By comparing numbers of elements, the time complexity of this algorithm can be analyzed.

4 Hence, the time is determined mainly by the total cost of the element comparisaon.

Algorithm straight MaxMin (a, n, max, min)
// Set max to the maximum & min to the minimum of a [1: n]

i
Max = Min = a [1];
Fori= 2tondo

1
1

If (a [i] = Max) then Max = a [i];
If (a [i] = Min) then Min = a [i];

i

e Explanation:

o Straight MaxMin requires Z(n-1) element comparisons in the best, average @ worst cases.
e By realizing the comparison of a [iJmax is false, improvement in a algorithm can be done.
 Hence we can replace the contents of the for loop by, If (a [i]> Max) then Max = a [i]; Else

if (a [i]< 2(n-1)
e [n the average ali] is > max half the time, and so, the avg. no. of comparison is dn/2-.

e The best case occurs when the elements are in increasing order and number of
comparisons are n-|.

e The worst case occurs when the elements are in decreasing order and the number of
comparisons are 2(n-1).

* A Divide and Conquer Algorithm for this problem would proceed as follows:
e a.let P =(n. a[i].....a [j]) denote an arbitrary instance of the problem.

e b. Here 'n"is the no. of elements in the list (a [i].....a[j]) and we are interested in finding
the maximum and minimum of the list.

e . |f the list has more than Z elements, P has to be divided into smaller instances.

e d. For example, we might divide 'P" into the Z instances, Pl=([n/2].a[1].........a[n/2]) & PZ2= (
n-[n/2). a[[n/2]+l]....... a[n]) .

o After having divided ‘P’ into Z smaller sub problems, we can solve them by recursively
invoking the same divide-and-conquer algorithm

Aldlgorithrm Max<Min(éi, 3, mmaa, rmedan)
A all 2o is a global array. Parameters 2 and § are integers,

RN T

Hh:dHHHHHqumm&HHH

Z=]

110

AL =3 = 3 = 7. The effect is to set sreasr and smén to the

A largest and smallest values in afd @ 7], respectivelsy.

if (¢ =

else

s

o 1) e
:

¥
(

) thern sreaxr t= rreire = ali]l; /S Sma

i = 3 — 1) then /) Another case of Small(f*)

f {a[7] == a[7]) then

o

rreasr == e[F]s rreire 1= a[i];
lse

rreaa == at]; wnive 1= ali];

e () e

S/ Find where to split the set.
vreied t= | (i 4+ 7323

S Solve the subproblems.
PlazxhAim (2, vreied, vrecoa, reegre s

g =)

Maxblin(rreded +— 1. §.rr2ezae 1l rredoeel s

A Combine the solutions.
if (rmeaxr = rreaxrl) then sroax =
if (rredre = smednl) then e 1=

7 I P ois not small, divide 7 into subproblemnms.

Complexity:
It T(n) represents this no., then the resulting recurrence relations is
T(n)=T([n/2]+1[n/2]+1 n>2
1 n=2
I n=|
When 'n' is a power of 2, n=2k for some positive integer 'k, then
T(n)=21(n/2) +2
= 2(21(n/4)+2)+2
= 4](n/4)+4+7

=2k-IT(D)+21<l<k-1<2i
= 2k-1+ Zk - Z
T(n) = (3n/2) - 2

Note that (3n/2) - 2 is the best-average and worst-case no. of comparisons when 'n' is a power of 2

123456789

22,13,-5,-8,15,60,17,31,47

i=]

1=9 false

i=j-1

1=8 false
mid=i+j/2
=1+9/2=5
mid=1+5/2=3
mid=6+9/2=7
mid=1+3/2=2

123456789
22,13,-5,-8,15,60,17,31,47

1,9,60,-8

1,5,22,-8 6,9,60,17

1,3,22,-5 4,5,-5,-8 6,7,60,17 8,9,47,31

1,2,22,13 3,3,-5,-5

Merge sort
Merge sort is a sorting technique based on divide and conquer technigue.

With worst- case time complexity being O(n log n), it is one of the most
respected algorithms.

Merge sort Is one of the most efficient sorting.

Merge sort first divides the array into equal halves and then combines
them in a sorted manner.

Steps
1.Divide: Divide the unsorted list into two sub lists of about half the size.

2.Conquer: Sort each of the two sub lists recursively until we have list
sizes of length 1,in which case the list itself is returned.

3.Combine: Merge the two-sorted sub lists back into one sorted list.

SO0 =] O O ok L2 B

e et e e =
=] & QN W S D

Algorithm MergeSort{low, high)

/[allow : high] is a global array to be sorted.
// Small(£) is true if there is only one element
// to sort. In this case the list is already sorted.

{

if (low < high) then [/ If there are more than one element

J Divide P into subproblems.
/ Find where to split the set.
mid := |{low + high)/2|:
J/ Solve the subproblems.
MergeSort({ low, mid);
MergeSort(mid + 1, high);
// Combine the solutions,
Merge(low, mid, high);

it e T
(-

Algorithm Merge(low, i, higlt)

S oallow @ high)] is a global array containing two sorted

S S subsets in allow : mid] and in a|mad + 1 : high]. The goal
is to merge these two sets into a single set residing

SO inallow @ high). O]] is an auxiliary global array.

It = low; £ := lore: 7 := i + 13
while ({h =< mid) and {7 < high)) do

if (a[f] < aly]) then

B[] := a[h];h := h + 1;

bli] :=ali]ls 7 :=3 + 1
i = ¢ <+ 1;

i

if (k = mid) then
for k= j to high do

blé] := alk]; i == i + 13

}

else
for k:= h to mid do

I!Jl[i] = 1’-!-[-'#.‘.]; =12+ 1;

for k := low to high do alk)] := b[k];

* Example

DOLC

505 50 (608 (& o

Time complexity

If the time for the merging operation 1s proportional to n, then the com-
puting time for merge sort is described by the recurrence relation

T £ 0 = 1. a a constant
e B 2T {rn/2) 4+ crne n > 1,c¢ a constant
When n is a power of 2. n = 2%, we can solve this equation by successive

substitutions:

T{n) 2(2T(nf4) + enf2) + en
AT {(ref4) + 2en

4(2T(n/8) + cnf4) + 2cn

25T(1) + ken
an + cnlogn

It is easy to see that if 2% < n < 2841 then T'(n) < T(2%*'!). Therefore

T(n) = Of{nlogn)

Quick Sort
Quicksort is a divide-and-conguer algorithm.

It works by selecting a 'pivot' element from the array and partitioning the
other elements into two sub-arrays, according to whether they are less
than or greater than the pivot.

The sub-arrays are then sorted recursively.

This can be done in-place, requiring small additional amounts
of memory to perform the sorting.

It can be about two or three times faster than its main competitors, merge
sort and heapsort.

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Heapsort

merged. In quicksort, the division 1nto two subarrays is made so that the
sorted snbarrays do not need to be merged later, This is accomplished by
rearranging the elements in a/l : n| such that aft] < afy] for all { between |
and moand all 7 between m + 1 and n for some m. 1< m < n, Thus, the
elements in a1 : m] and alm+ 1 :] can be ndependently sorted. No merge
18 nevded, The rearrangement of the elements 1 accomplished by picking
some element of a| |, say © = afs|, and then reordering the other elements
30 thit all elements appearing before £ in a1 : n) are less than or equal to
Fand all elements appearing after ¢ are greater than or equal to £, This
rearranging 1s referred to as parftioning.

mm o m d -m

LT=T0 = < B — ol | W N PLU (N

11}
L
12
14
14
15
16

Algorithm QuickSort(p, g)

/ Sorts the elements alp|, ..., alq] which reside in the global
/[array a[l : n| into ascending order; a[n 4+ 1] is considered to
// be defined and must be > all the elements in a[l : n).

if (p < gq) then [/ If there are more than one element

/[divide P into two subproblems.
7 := Partition{a, p.q + 1);
/7 18 the position of the partitioning element.
/ Solve the subproblems.
QuickSort(p, 7 — 1);
QuickSort(y + 1,4q);
/[There is no need for combining solutions.

* https://www.gatevidyalay.com/tag/quick-sort-ppt/

ol Fe R R S

L

1=
1=

1<%
15
16

17T

1<k
et)

o PO L

Adlgorithiermy FPartition{«ae., s7e, 52}
A Within alre], afvrre 4+ 1] . . . L2 — 1] the elements are
A rearrangod in suach a manmer that if inmdtiallsy ¢ — o [we],
A then after completion alg] = ¢ for some g bhetween sre
S and po— 1, alfk] = ¢ for sre == & = g. and a[k] = ¢
A Tor g = k& << p. g is returned. Set al[p] — oo
4

2 1= ax[vre]s & 1= wvvez F 11— pr:

e ezt

i

p b =) = P =F= 14 =
P — & + 13

azwnktil .{_--I'_'!-[:!:_] = ar)3

e freaeat
; 1

F F —
until (ali] =)3

if (7 = 53 thermn Interchanmnge(a, #. 732

'E'u'll

¥ wramtil (2 = 73

frre] = ex[7F]3 ex|[F] = ar; retwmrm J;

¥

A dlgorithwerem Interchange(oa, £, 57)
AV Exchange @[] with a[5]-

:=— «al[Z];

ali] := alil; alsi] := ps

Time Complexity

* To find the location of an element that splits the array into two parts, O(n)
operations are required.

* This is because every element in the array is compared to the partitioning
element.

* After the division, each section is examined separately.

« If the array is split approximately in half (which is not usually), then there will
be log,n splits.

» Therefore, total comparisons required are f(n) = n x log,n = O(nlog,n).
Worst case
* Quick Sort is sensitive to the order of input data.

* It gives the worst performance when elements are already in the ascending
order.

* It then divides the array into sections of 1 and (n-1) elements in each call.
* Then, there are (n-1) divisions in all.
e Therefore here total combarisons reauired are f(n) = n x (n-1) = O(n?4).

Quick sort

12 3456 78 910
65 70 75 80 85 60 55 50 45 *
m=1j=10 v=65

i=i+1=1+1=2

ali]>=v

70>=65 true

j=9

aljl<=v

45<=65 true

2<9 true

65 45 75 80 85 60 55 50 70 *
i=3

75 >=65 true

j=8

50<=65 true

3<8 true
65 45 50 80 85 60 55 75 70 *

=4
80>=65 true
=7
55<=65 true
4<=7

65 45 50 55 8560 80 75 70 *
1=5

85>=65 true
j=6
60<=65 true

5<6 true

65 45 50 55 6085 80 75 70 *
=6

* 85>=65 true

¢ =5

60<=65 true

. 6<5 false nointerchange

e a[m]=a[j] a[j]l=m returnj

e a[l]=60 a[5]=65

. j=5

e 60 45 50 556585 80 7570 *

45 50 55 60 65 70 75 80 *

Selection Sort

The Partition algorithm of Section 3.5 can also be used to obtain an efficient
solution for the selection problem. In this problem. we are given n elements
all : n] and are required to determine the kth-smallest element. If the
partitioning element v is positioned at alj], then 5 — 1 elements are less than
or equal to a[j] and n — j elements are greater than or equal to afj]. Hence
if k& < j, then the kth-smallest element is in all : 5 — 1; if & = 3, then
alj] is the kth-smallest element; and if & > 7, then the Eth-smallest element
is the (k — j)th-smallest element in alj + 1 : n]. The resulting algorithm
15 function Selectl {Algorithm 3.17). This function places the Eth-smallest
element into position alk] and partitions the remaining elements so that
ali] <alk], 1 <i<k, and ali] =z alk], k < i < n.

This sorting algorithm is an in-place comparison- based algorithm .

In which the list Iis divided into two parts, the sorted part at the left end
and the unsorted part at the right end.

Initially, the sorted part is empty and the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped
with the leftmost element, and that element becomes a part of the sorted
array.

This process continues moving unsorted array boundary by one element
to the right

Each time selecting an item according to its ordering and placing it in the
correct position in the sequence

1.The Selection Sort Algorithm
For each index position |

Find the smallest data value in the array from positions i through length -
1, where length is the number of data values stored.

Exchange (swap) the smallest value with the value at position 1.
Algorithm

Step 1 — Set MIN to location 0

Step 2 — Search the minimum element in the list

Step 3 — Swap with value at location MIN

Step 4 — Increment MIN to point to next element

Step 5 — Repeat until list is sorted

https://image.slidesharecdn.com/himanshukesharwani16a-171114180708/95/selection-sorting-6-638.jpg?cb=1510682879

L=k =

[S Sy T S R W g Sy
I W oy I R P e

19

Algorithm 5Selectl{a, v, &)

S/ Selects the Eth-smallest element in all : i) and places it
S/ in the Eth position of ¢ |. The remaining elements are
A rearranged such that ajm] < alk] for 1 < m < &, and

S Soalm] = alk] for B < << e

¥

lovr 1= 13 wp 1= n + 13
alrn 4+ 1] 1= oo; S/ aln 4+ 1] is set to infinity.
repeat

{

S/ Each time the loop is entered,
SO =< dow < k< up < n + 1.
4 = Partition{a. fowr, 1w
F /4 7 is such that a[j] is the jth-smallest value in «f].
if (k& = 7)) then return;
else if (& < j) then up := 35 /) 7 is the new upper limit.
else [low = 3 + 15 J/ 7 + 1 is the new lower limit.

} until (false);

Algorithm 3.17 Finding the Ath-smallest element

Time Complexity Analysis-

« Selection sort algorithm consists of two nested loops.

« Owing to the two nested loops, it has O(n®) time complexity.

Time Complexity

Best Case

Average Case

Waoarst Case

e Important Notes-

» Selection sort Is not a very efficient algorithm when data sets are large.
* This Is indicated by the average and worst case complexities.

» Selection sort uses minimum number of swap operations O(n) among
all the sorting algorithms.

 Strassen’s Matrix Multiplication
 Basic Matrix Multiplication
void matrix_mult ()

{
for(1=1;1<=N; i++)
{

for () =1;) <=N; J++)
{

for(k=1;k<=N;k++)

{

compute Ci,j; }

)

Ci,j = Zai,kbk-j

k=1
N N

N
ThusT(N)=Y > Y c=cN* =O(N?)

i-1 j-1 k-1

Basic Matrix Multiplication

Suppose we want to multiply two matrices of size N
x N: for example A x B = C.

Cl.l Clz == A 11
Cm, A21

C,,=a,,b,, +a,b,,
Cy=a,b,+a, b,
C,,=a,;b,, +a,,b,,

Cyy =a3,by; +a5,b,,

By 312
Bay

2x2 matrix muluplication can be
accomplished in 8
multiplication.(2%=s,% =23)

Divide and Conquer

Following Is simple Divide and Conguer method to multiply two square
matrices.

1) Divide matrices A and B in 4 sub-matrices of size N/2 x N/2 as shown
In the below diagram.

2) Calculate following values recursively. ae + bg, af + bh, ce + dg and cf
+ dh.

a b e f ae + bg| af + bh
X p—
C d g h ce +dg| cf + dh
A B C

A, B and C are square metrices of size N x N
a, b, c and d are submatrices of A, of size N/2 x N/2
e, T, 2 and h are submatrices of B, of size N/2 x N/2

* In the above method, we do 8 multiplications for matrices of size N/2 x
N/2 and 4 additions. Addition of two matrices takes O(N?) time. So the
time complexity can be written as

T(N) = 8T(N/2) + O(N?)

From Master's Theorem, thme complexity of above method is O(N?)

which is unfortunately same as the above naive method.

« Simple Divide and Conquer also leads to O(N3), can there be a
better way?
In the above divide and conquer method, the main component for high
time complexity is 8 recursive calls.

 The idea of Strassen’s method is to reduce the number of recursive
calls to 7.

» Strassen’s method is similar to above simple divide and conquer
method

* This method also divide matrices to sub-matrices of size N/2 x N/2 as
shown in the above diagram, but in Strassen’s method, the four sub-
maitrices of result are calculated using following formulae.

L)
et
|

= a(f - h) p2 = (a + b)h

(c + d)e P4 = d(g - e)
p5 = (a + d)(e + h) p6 = (b - d){g + h)
p7 = (a - c)(e +)

Q
W
Il

The A x B can be calculated using above seven multiplications.
Following are values of four sub-matrices of result C

a b e f pS> + pd - p2 + pb pl + p2
X
C - g N
A B

A, B and O are sgquare metrices ot size M x M

a, b, cand d are scubmatrices of &, of size M2 »x MNS2
=, ., 2 and h are submatrices of B, of size N/2Z2 x N/2

pl, p2,. p3, pd, p5, pb and p7 are submatrices of size NS2 x MNJS2

p3 + pad pl + p5 -p3 -p/7/

Addition and Subtraction of two matrices takes O(N?) time. So time complexity can be

written as
T(N) = 7ZT(N/2) + O(N?)

From Master's Theorem, time complexity of above method is

O(N'°27) which is approximately O(NZ-3%7%)

Generally Strassen’s Method is not preferred for practical applications for following
reasons.

1) The constants used in Strassen’s method are high and for a typical application Naive
method works better.

2) For Sparse matrices, there are better methods especially designed for them.

3) The submatrices in recursion take extra space.

4) Because of the limited precision of computer arithmetic on noninteger values, larger

errors accumulate in Strassen's algorithm than in Naive Method (Source: CLRS Book)

