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Chapter 2

Exactly Soluble Eigenvalue

Problems

2.1 Introduction

In this chapter we will be studying as illustrative examples of the application of the Schrö

dinger Equation, the Hydrogen Atom problem and the one dimensional Linear Harmonic

Oscillator. The Hydrogen atom is an example of a two body problem consisting of a

central heavy nucleus and a lighter electron orbiting around it. Hence for studying the

Hydrogen atom, we should have to set up the Hamiltonian function for this two body

problem and then move on to setting up the Schrö dinger Equation and solving it.

Figure 2.1: Center of Mass coordinates and relative coordinates for a two body
system,

33
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2.2 Reduction of Two Body Hamiltonian

Let as consider a two body system, consisting of particles m1 and m2 having position

co-ordinates r1 and r2 as shown in Fig. 2.1.

Then the Hamiltonian of this system is given as the sum of the kinetic energies of the

two particles and the potential energy due to their interactions, namely V (r1 − r2).

H = − ℏ2

2m1
∇2

1 −
ℏ2

2m2
∇2

2 + V (r1 − r2) (2.1)

where

∇1 ≡ f

(
∂

∂x1
,

∂

∂y1
,

∂

∂z1

)
and

∇2 ≡ f

(
∂

∂x2
,

∂

∂y2
,

∂

∂z2

)
are the gradient operators for the two particles in terms of their position coordiantes.

2.2.1 Center of Mass Coordinates and Relative Coordinates

If the center of mass of the system, say G, is at a distance R from the origin and the

relative distance between the two particles is r, then

r = r1 − r2 (2.2)

and

(m1 +m2)R = m1r1 +m2r2

or

R =
m1r1 +m2r2
(m1 +m2)

(2.3)

The coordinate R is called as the center of mass coordinate while the coordinate r is

called as the relative coordinate

2.2.2 Hamiltonian in terms of Center of Mass Coordinates and Rela-

tive Coordinates

The gradients in terms of the center of mass co-ordinates R and relative co-ordinates r

are given as

∇R ≡ f

(
∂

∂X
,
∂

∂Y
,
∂

∂Z

)
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and

∇r ≡ f

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
Let the ith component of ∇1 be given as

∂X

∂x1
=

(
m1

m1 +m2

)
∂x

∂x1
= 1.

∂

∂x1
=

∂X

∂x1

∂

∂X
+

∂x

∂x1

∂

∂x
or

∂

∂x1
=

(
m1

m1 +m2

)
∂

∂X
+

∂

∂x
(2.4)

From Eqn. (2.4) we have

∂2

∂x21
=

{(
m1

m1 +m2

)
∂

∂X
+

∂

∂x

}{(
m1

m1 +m2

)
∂

∂X
+

∂

∂x

}

or
∂2

∂x21
=

(
m1

m1 +m2

)2 ∂2

∂X2
+

(
2m1

m1 +m2

)
∂

∂X

∂

∂x
+

∂2

∂x2

Hence

∇2
1 =

(
m1

m1 +m2

)2

∇2
R +

(
2m1

m1 +m2

)
∇R∇r +∇2

r (2.5)

In a similar manner,

∇2
2 =

(
m2

m1 +m2

)2

∇2
R −

(
2m2

m1 +m2

)
∇R∇r +∇2

r (2.6)

The Eqns. (2.5 & 2.6) give the expressions for the Laplacian operators in terms

of the position vectors (r1& r2) for the first and second particle respectively.

Substituting Eqns. (2.2), (2.5 & 2.6) in Eqn. (2.1) gives

H = − ℏ2

2(m1 +m2)
∇2

R − ℏ2

2

(
1

m1
+

1

m2

)
∇2

r + V (r)

or

H = − ℏ2

2M
∇2

R − ℏ2

2µ
∇2

r + V (r). (2.7)
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Eqn. (2.7) shows that the Hamiltonian H for a two body system is the sum of two

commuting parts depending on independent sets of variables, (i.e) H = HCM+H relative.

The first part

HCM = − ℏ2

2M
∇2

R, (2.8)

gives the kinetic energy of the system as a whole. It describes the free motion of the

center of mass of the system G and depends on the center of mass coordinate R alone.

The second part

H relative = − ℏ2

2µ
∇2

r + V (r), (2.9)

depends on the relative variables r only. It is identical with the Hamiltonian of a single

particle of mass µ (reduced mass) moving in a central potential V (r).

Total Mass M:

Here in the Eqn. (2.7), the expression m1 + m2 represents the total mass of the

two particle system as a whole and is given as

M = m1 +m2. (2.10)

Reduced Mass µ: Similarly in the Eqn. (2.7), µ represents the reduced mass of the

two particle system and is given as

1

µ
=

1

m1
+

1

m2
or

1

µ
=

m2 +m1

m1 ×m2
or

µ =
m1 ×m2

m2 +m1
. (2.11)

2.2.3 Separation of Schröedinger’s Into Energy Eigen Value Equations

Let the Schröedinger equation for the system be given as

Hϑ(R, r) = E′ϑ(R, r)

(i.e) [
− ℏ2

2M
∇2

R − ℏ2

2µ
∇2

r + V (r)

]
ϑ(R, r) = E′ϑ(R, r) (2.12)
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Factorizing the wave function ϑ(R, r) as

ϑ(R, r) = W (R)u(r) (2.13)

and separating Eqn. (2.12) in terms of the center of mass variables R and relative

co-ordinate variables r, we have

1

W (R)

[
− ℏ2

2M
∇2

R

]
W (R)− E′ = − 1

u(r)

[
− ℏ2

2µ
∇2

r + V (r)

]
u(r) = −E

where E = separation constant. Then equating both the parts of the above equation to

the separation constant gives

− ℏ2

2M
∇2

R − [E′ − E]W (R) = 0. (2.14)

and [
− ℏ2

2µ
∇2

r + V (r)

]
u(r) = Eu(r). (2.15)

Method of Separation of Variables:

Substituting Eqn. (2.13) in Eqn. (2.12) we have[
− ℏ2

2M
u(r)∇2

RW (R)− ℏ2

2µ
W (R)∇2

ru(r) + V (r)W (R)u(r)

]
= E′W (R)u(r).

Dividing both the sides of the above equation by W (R)u(r) gives

1

W (R)

[
− ℏ2

2M
∇2

R

]
W (R) +

1

u(r)

[
− ℏ2

2µ
∇2

r

]
u(r) + V (r) = E′.

Rearranging the equation and equating it to a separation constant E, gives

1

W (R)

[
− ℏ2

2M
∇2

R

]
W (R)− E′ = − 1

u(r)

[
− ℏ2

2µ
∇2

r

]
u(r)− V (r) = −E, or

[
− ℏ2

2M
∇2

R

]
W (R)−

[
E′ − E

]
W (R) = 0, and

[
ℏ2

2µ
∇2

r + V (r)

]
u(r) = Eu(r).
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Equation (2.14) is in fact the energy eigen value equation of motion of a free particle of

mass M. The energy spectrum for such a particle is a continuous one.

On the other hand Eqn. (2.15) gives the energy eigen value equation, for the relative mo-

tion between the two particles. This equation has the appearance of the Schröedinger’sr

equation for the motion of a single particle of mass µ in a central potential V (r).

Let us consider one electron atoms such as Hydrogen (H), singly ionized Helium He+

ion, doubly ionized Lithium Li++ ion etc. These are two body systems consisting of

atomic nucleus of charge Ze and electron of charge −e with the Coulombic Electrostatic

Potential V (r) = −
(
Ze2

r

)
. If the nucleus is remaining stationary, then the Hamiltonian

in the Center of Mass frame HCM becomes zero (i.e) HCM = 0. This is because the

kinetic energy of the nucleus in zero.

Hence the two body central force problem gets reduced to just the relative motion of a

single particle, namely the electron, with respect to the nucleus due to the electrostatic

potential V (r). The Schröedinger’sr equation for this one electron atom can therefore

be given as

[
− ℏ2

2µ
∇2

r + V (r)

]
u(r) = Eu(r). (2.16)

This Eqn. (2.16) will be the starting point for the discussion of the Hydrogen atom

problem in the next section.

2.3 Hydrogen Atom

The Hydrogen atom is an example of a two particle system consisting of an atomic

nucleus of charge Ze and an electron of charge −e. As the nucleus is stationary, the

Schröedinger’s equation for the Hydrogen atom is just that for a single particle, namely,

the electron moving in a central Coulomb potential V (r) =

(
−Ze2

r

)
. It is given as

[
− ℏ2

2µ
∇2

r + V (r)

]
u(r) = Eu(r) (2.17)

where
1

µ
=

(
1

mn
+

1

me

)
≃ 1

me
, or µ ≃ me. This means that the reduced mass for the

Hydrogen atom is just approximately equal to the mass of the electron itself.



Chapter II. Hydrogen Atom 39

As the Hydrogen atom is a spherically symmetric problem, we will convert the Schröedin-

ger’s equation from Cartesian coordinates to spherical polar coordinates. Once this has

been done, we will then split it into two parts, namely the radial part and angular part

and will try to solve these parts individually.

To solve the radial equation, we convert the equation into the associated Lagurré Differ-

ential equation- a standard mathematical equation and obtain the radial wave function

in terms of the associatied Lagurré polynomial functions which are well known in math-

ematical theory of Special Functions.

To solve the angular part of the equation, we convert it into the Legendre differential

equation, another standard mathematical equation whose solutions are well known and

obtain the angular wave function in terms of the spherical harmonics.

When the solutions of the radial wave equation and angular part of the Schröedinger’s

equation are obtained, the complete wave function for the electron can be constructed.

Expressing the Laplacian operator ∇2
r in spherical polar coordinates and the wave func-

tion in terms of those coordinates, that is u(r) ≡ u(r, θ, ϕ), Eqn. (2.17) can be expanded

as

− ℏ2

2µ

[
1

r2
∂

∂r

(
r2

∂

∂r

)
+

1

r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

r2sin2θ

∂2

∂ϕ2

]
u(r, θ, ϕ) +

V (r)u(r, θ, ϕ) = Eu(r, θ, ϕ) (2.18)

2.3.1 Separation of Radial and Angular Parts

Let us factorize the wave function into radial Rnl(r) and angular parts Y m
l (θ, ϕ) such

that

u(r, θ, ϕ) = Rnl(r)Y
m
l (θ, ϕ) (2.19)

Substituting this in Eqn. (2.18) and separating it into radial and angular parts and

multiplying it through out by −
(
2µr2

ℏ2

)
we have

1

R

∂

∂r

(
r2

∂R

∂r

)
+

2µr2

ℏ2
[E − V (r)] = − 1

Y

[
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

sin2θ

∂2

∂ϕ2

]
Y (2.20)
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When the R.H.S of Eqn(2.20) is multiplied by ℏ2, it just gives the angular momentum

operator L2 in spherical polar coordinates, that is

L2 = −ℏ2
[

1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1

sin2θ

∂2

∂ϕ2

]
(2.21)

Therefore Eqn. (2.20) can be rewritten as

1

R

∂

∂r

(
r2

∂R

∂r

)
+

2µr2

ℏ2
[E − V (r)] =

L2Y

ℏ2Y
(2.22)

However the angular momentum operator L2 satisfies the eigen value equation

L2Y = l(l + 1)ℏ2Y (2.23)

where l is the angular momentum quantum number.

Hence Eqn (2.22) becomes

1

R

∂

∂r

(
r2

∂R

∂r

)
+

2µr2

ℏ2
[E − V (r)] = l(l + 1). (2.24)

Rearranging the above equation, dividing by r2, multiplying by R and substituting

V (r) = −
(
Ze2

r

)
gives

1

r2
∂

∂r

(
r2

∂R

∂r

)
+

2µ

ℏ2

[
E +

Ze2

r
− l(l + 1)ℏ2

2µr2

]
R = 0 (2.25)

This Eqn. (2.25) gives the radial wave equation for the electron in a Hydrogen atom.

2.3.2 Bound States E < 0: Change of Variables

Let us consider the bound state for the electron, for which E < 0 and define two positive

real parameters α and λ given by

α2 = −8µE

ℏ2
(2.26a)

λ =
2µZe2

αℏ2
(2.26b)
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Dividing Eqn. (2.25) throughout by α2 gives

1

α2r2
∂

∂r

(
r2

∂R

∂r

)
+

2µ

α2ℏ2

[
E +

Ze2

r
− l(l + 1)ℏ2

2µr2

]
R = 0. (2.27)

Let us change the independent variable from r to ρ such that ρ = αr,
d

dr
=

(
dρ

dr

)
d

dρ
and hence

d

dr
= α

d

dρ

Substituting these quantities in Eqn. (2.27) gives

∂2R

∂ρ2
+

2

ρ

(
∂R

∂ρ

)
+

[
λ

ρ
− 1

4
− l(l + 1)

ρ2

]
R(ρ) = 0. (2.28)

Here we have
1

α2r2
∂

∂r

(
r2

∂R

∂r

)
=

1

α2r2
∂

∂ρ

(
α2r2

∂R

∂ρ

)
=

1

ρ2
∂

∂ρ

(
ρ2

∂R

∂ρ

)
=

∂2R

∂2
+

2

ρ

(
∂R

∂ρ

)

while
2µE

α2ℏ2
=

2µE

ℏ2

{
1

α2

}
=

2µE

ℏ2
×
{

ℏ2

−8µE

}
= −1

4

2µ

α2ℏ2
×
(
Ze2

r

)
=

2µZe2

αℏ2
× 1

αr

=
λ

ρ

and
2µ

α2ℏ2
×−

{
l(l + 1)ℏ2

2µr2

}
= − l(l + 1)

α2r2
)

= − l(l + 1)

ρ2
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Case1: Solution in the Asymptotic Region ρ → ∞

As ρ → ∞, all the terms in Eqn. (2.28) having ρ in the denominator will vanish. The

only dominant term will be −
(
1

4

)
. Therefore Eqn. (2.28) reduces to

∂2R

∂ρ2
− 1

4
R(ρ) = 0. (2.29)

Solving this equation, we obtain the physically admissible solution as

R(ρ) = Const e−ρ/2. (2.30)

Case 2: Solution at the Origin ρ → 0

As ρ → 0, the dominant term in Eqn. (2.28) is
l(l + 1)

ρ2
. Hence Eqn.(2.28) reduces to

∂2R

∂ρ2
− l(l + 1)

ρ2
R(ρ) = 0. (2.31)

The physically admissible solution in this case is

R(ρ) = Const ρ+l. (2.32)

We find that R(ρ) is discontinuous at the origin. To over come this singularity, we

associate a factor L(ρ), such that

R(ρ) = ρ+le−ρ/2L(ρ) (2.33)

Differentiating this twice, and substituting, Eqn. (2.28) becomes

ρ
∂2L
∂ρ2

+ [2(l + 1)− ρ]
∂L
∂ρ

+ [λ− (l + 1)]L(ρ) = 0 (2.34)

To solve this equation, we assume L(ρ) to be a power series of the form

L(ρ) = c0 + c1ρ
l + c2ρ

2 + c3ρ
3 + c4ρ

4 + .........csρ
s

or

L(ρ) =
∞∑
s=0

csρ
s (2.35)
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The recursion relation between the coefficients of the successive terms of the series so-

lution of Eqn. (2.34) is given by

cs+1

cs
=

s+ l + 1− λ

(s+ 1)[s+ 2(l + 1)]
(2.36)

In the asymptotic limit s → ∞ Eqn. (2.36) becomes

cs+1

cs
=

1

s
(2.37)

Proof:

Differentiating Eq. 2.35 with respect to ρ gives

∂L(ρ)
∂ρ

=

∞∑
s=0

cssρ
s−1

∂2L(ρ)
∂ρ2

=

∞∑
s=0

css(s− 1)ρs−2

Substituting these in Eq. (2.34) gives

ρ

{ ∞∑
s=0

css(s− 1)ρs−2

}
+ [2(l + 1)− ρ]

{ ∞∑
s=0

cssρ
s−1

}

+ [λ− (l + 1)]
∞∑
s=0

csρ
s = 0

∞∑
s=0

cs [λ− (l + 1)− s] ρs +
∞∑
s=0

css [2(l + 1) + (s− 1)] ρs−1 = 0

For the above equation to hold good, we require that each individual term in the

series should be equal to zero. Hence taking the coefficient of ρs and equating it

to zero, we find that

cs [λ− (l + 1)− s] ρs + cs+1(s+ 1) [2(l + 1) + s] ρs = 0

Rearringing the above equation gives

cs+1

cs
=

− [λ− (l + 1)− s]

(s+ 1)[s+ 2(l + 1)]
or

=
cs+1

cs
=

[s+ (l + 1)− λ]

(s+ 1)[s+ 2(l + 1)]
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If s → ∞, we have

cs+1

cs
≃ s

s2
or

cs+1

cs
=

1

s

Hence the proof.

The equation (2.37) tells that the series for L(ρ) behaves as an exponential series, that

is

L(ρ) ≃ eρ (2.38)

Proof:

Let us consider the exponential series

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · xn−1

(n− 1)!
+

xn

n!
or

ex =

∞∑
n=10

xn

n!

Hence the ratio of successive coefficients becomes

Rn+1

Rn
=

1/n!

1/(n− 1)!
or

Rn+1

Rn
=

(n− 1)!

n!
or

Rn+1

Rn
=

1

n

Comparing the above equation with Eq. (2.37), we find that the function L(ρ)
also behaves as an exponential series in the asymptotic limit, that is

L(ρ) ≃ eρ

if s → ∞. Hence the proof.

Then the equation (2.33) becomes

R(ρ) = ρ+le−ρ/2eρ or

R(ρ) = ρ+le+ρ/2 (2.39)
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From this we find that R(ρ) behaves as e+ρ, and diverges to infinity as ρ → ∞. This

violates the condition for admissibility, namely R(ρ) → 0 as ρ → ∞. Hence the math-

ematical solution of the radial wave equation, namely Eqn. (2.28) is inadmissible on

physical grounds.

To over come this difficulty, we truncate the series at some finite term, say n′ by taking

a positive integer value for λ such that

s = n′ (2.40a)

λ = n = n′ + l + 1 (2.40b)

Equation (2.36) then becomes

cs+1

cs
=

cn′+1

c′n
= 0. (2.41)

The infinite series L(ρ) will now get terminated at cs and will behave as a finite degree

polynomial, namely the Associated Lauguerre polynomial of order n′. As n′ is +ve, the

above equation 2.40(b) tells that

n′ = n− (l + 1) > 0 (2.42)

or

l < (n− 1) (2.43)

This means l cannot exceed (n− 1), (i.e) l should vary in the range 0 < l ≤ (n− 1).

Here n′ is called the radial quantum number and n is to be taken as the total quantum

number, while l is to be taken as the angular momentum quantum number. Here n

varies as n = 1, 2, 3, ...... and l varies as l = 0, 1, 2, .....(n − 1). The z − component of

angular momentum is given by the quantum number m. It can take (2l + 1) values

starting from −l to +l.

2.3.3 Energy Eigen Values

From Eqns. 2.26b (a) & (b), we have

λ =
2µZe2

αℏ2
or

λ =
2µZe2

ℏ2

{
ℏ2

−8µE

}1/2

(2.44)
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But from Eqn. 2.40(b) we know that

λ = n. (2.45)

Combining these two equations, the energy eigen values for the nth level can be obtained

as

En = −|En| = −µZ2e4

2ℏ2n2

or

En = −1

2

Ze2

(a/Z)

1

n2
(2.46)

where a =

(
ℏ2

µe2

)
is the radius of the Hydrogen atom. The energy eigen values given

by Eqn. 2.46 are in agreement with old quantum theory and experimental results.

The energy levels given by Eqn. (2.46) for various quantum states described by the

quantum numbers n, l,m are shown in Fig. (2.2).

The energy eigen values are independent of l and m and are dependent only on the value

of n. This condition of the energy state is known as degeneracy (i.e) the energy levels

of a Hydrogen atom are degenerate w.r.t energy states l and m. The degeneracy in l

arises due to the Central Coulombian Potential and the degeneracy in m arises due to

spherical asymmetry of the Coulombian Potential. The degree of degeneracy is given by

n−l∑
l=0

(2l + 1) =
2n(n− 1)

2
+ n = n2 (2.47)

2.3.4 Energy Eigen functions

The associated Lauguerre polynomial equation is written as

ρLp ′ ′
q (ρ) + (p+ 1− ρ)Lp ′

q (ρ) + (q − p)Lp
q(ρ) = 0 (2.48)
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Figure 2.2: Energy Levels corresponding to various quantum states defined by n, l
and m values

Taking the values for λ, p and q as

λ = n (2.49)

p = 2l + 1 (2.50)

q = n+ l. (2.51)

the Associated Laguerre equation, Eqn. (2.48) becomes

ρ
∂2Lp

q

∂ρ2
+ [2(l + 1)− ρ]

∂Lp
q

∂ρ
+ [n− (l + 1)]Lp

q(ρ) = 0. (2.52)

This equation, Eqn(2.52) reduces to just the radial wave equation, Eqn. (2.34) for the

Hydrogen atom, whose solution is the associated Lauguerre polynomial and is given by

Lp
q(ρ) ≡

dp

dρp
Lq(ρ) = L2l+1

n+l (ρ) (2.53)
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multiplied by an arbitrary constant, Nnl. Correspondingly, the wave functions R(ρ) for

a given set of n and l values are

Rnl(ρ) = Nnl ρ
l e−ρ/2 L2l+1

n+l (ρ) (2.54)

where ρ = α r =
2Zr

n a
and a =

(
ℏ2

µe2

)
.

To Determine Normalization Constant

The condition for normalization of wave function is∫
|Rnl(r)|2 r2 dr = 1. (2.55)

Substituting Eqn. (??), the above equation gives

N2
nl

∫ ∞

0
e−ρ ρ2l [Lp

q(ρ)]
2 ρ2

α2

dρ

α
= 1. (2.56)

From the orthogonal property of the Associated Lauguerre Plynomials, namely∫ ∞

0
e−ρ ρ(2l+1) [Lp

q(ρ)]
2 dρ =

(2q − p+ 1)(q!)3

(q − p)!
(2.57)

Taking p = 2l + 1 and q = n+ l and substituting Eqn. (2.57) in Eqn. (2.56) gives

N2
nl

α3

2n [(n+ l)!]3

(n− l − 1)!
= 1.

or

Nnl =

√
α3 (n− l − 1)!

2n [(n+ l)!]3
. (2.58)

Substituting these in Eqn. (2.54), the radial wave functions can be written as

Rnl(r) =

{(
2Z

na

)3 (n− l − 1)!

2n[(n+ l)!]3

}1/2

e−
Zr
na

(
2Z

na
.r

)l

L2l+1
n+l

(
2Z

na
.r

)
(2.59)

The first few radial wave functions are given in the Table 1. The behaviour of the radial

wave functions for various values of n are shown below in Figs. 2.3, 2.4 and 2.5. From

the graphs it is seen that the wave function crosses the ρ axis (a/2r) axis (n − l − 1)

times in the region ρ = 0 to ρ = ∞.



Chapter II. Hydrogen Atom 49

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  2  4  6  8  10  12  14  16  18  20

(a)  1s-state

R
1
(ρ

)

ρ 

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  2  4  6  8  10  12  14  16  18  20

(b)  2s-state

R
2
(ρ

)

ρ 

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0  2  4  6  8  10  12  14  16  18  20

(c)  3s-state

R
3
(ρ

)

ρ 

Figure 2.3: s-state(l=0) Radial Wavefunctions for various n values
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Figure 2.4: p-state (l=1) Radial Wavefunctions for various n values
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Figure 2.5: d-state (l=2) Radial Wavefunctions for various n values
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Table 2.1: Radial Wave functions and their spectroscopic notations

n l Spectroscopic Notation Radial Wavefunctions Rnl(r)

1 0 1 - s state 2
(
z
a

)3/2
e−Zr/a

2 0 2 - s state 1√
2

(
z
a

)3/2 (
1− Zr

2a

)
e−Zr/2a

2 1 2 - p state 1√
24

(
z
a

)5/2
r e−Zr/a

3 0 3 - s state 2
3√3

(
z
a

)3/2
[1− 2Zr

3a
+ 2Z2r2

27a2
] e−Zr/3a

2.3.5 Complete Hydrogen Atom Wavefunctions

The complete Hydrogen atom wave function is then given

unlm(r, θ, ϕ) = Rnl(r)Y
m
l (θ, ϕ)

where the spherical harmonic Y m
l (θ, ϕ) is given as

Y m
l (θ, ϕ) = (−1)m

√
(2l + 1)

4π

(l − |m|)!
(l + |m|)!

Pm
l (cos θ) e±ımϕ (2.60)

The first few spherical harmonics are listed in Table 2. Plotting |Yl,m(θϕ)|2 for various

angles (θ&ϕ), the polar diagrams obtained in the (x− y) plane are shown in Figs. (2.6)

and (2.7).

Table 2.2: Spherical Harmonics and their Mathematical Expressions

Spherical Harmonic Mathematical Expression

Y0,0

(
1
4π

)1/2
Y1,0

(
3
8π

)1/2
cos θ

Y1,±1 ∓
(

3
4π

)1/2
sin θ e±iϕ

Y2,0

(
5

16π

)1/2
(3 cos2 θ − 1)

Y2,±1 ∓
(
15
8π

)1/2
sin θ cos θ e±iϕ

Y2,±2 ∓
(

15
32π

)1/2
sin2 θ, e±2iϕ
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Figure 2.6: Spherical Harmonics for various l and m values
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Figure 2.7: Spherical Harmonics for various l and m values
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Probability Densities

The probability that the electron is within the spherical shell between radii r and r+dr

from the nucleus in given by

Pn,l(r)dr = |Rn,l(r)|2 r2dr

The total probability may therefore be given as

Pn,l(r) = |Rn,l(r)|2 r2 (2.61)

The probability densities for various quantum states defined by n and l values are given

in Fig. (2.8)

Figure 2.8: Probability Densities for various quantum states defined by n and l values
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Ground State Probability

For the ground state of the Hydrogen atom, (n = 1, l = 0). Hence the radial wave

function is given as

R1,0(r) = 2

(
1

a

)3/2

e−(r/a) (2.62)

Therefore the ground state probability density is given as

P1,0(r) = |R1,0(r)|2 r2

P1,0(r) =
4

a3
e−2r/a.r2 (2.63)

The total probability is maximum if
dP

dr
= 0. Hence

dP

dr
=

4

a3
e−2r/a

[
2r − 2r2

a

]
= 0

or [
2r − 2r2

a

]
= 0

or

r = a (2.64)

Thus we find that the probability distribution of the radial position of the electron rises

to a maximum at r = a in the ground state. Here a is equivalent to the first Bohr radius

of Hydrogen atom as per the old quantum theory of Neil Bohr.

Similarly the maximum probability of the 2s − state electron lies at 4a and 3s − state

electron lies at 13a etc. These are shown in the Pn,l(ρ) vs ρ graph drawn in Fig. (2.8).
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