NUMERICAL PROGRAMMING IN PHYSICS - PRACTICAL

IT MSc Physics-III Semester

Course Code: 20PPH3C12P2

PG AND RESEARCH DEPARTMENT OF PHYSICS

JAMAL MOHAMED COLLEGE
College with Potential for Excellence
Reaccredited (3™ Cycle) with ‘A’ Grade by NAAC
Autonomous and Affiliated to Bharathidasan University
Tiruchirappalli-620 020.

Numerical Programming in Physics -IIMSc Physics - [lISem Page 1

Contents

: Page No
S1 No Title &
1 False position method: Roots of a Quadratic equation 1
2 Newton’s Raphson’s Method: Roots of a Polynomial Equation. 6
3 Gauss Elimination Method: Application to an Electrical 1
Network.
4 Linear Least Squares Fitting: Determination of the Charge of 17
an Electron.
5 Fadeev-Levrrier Method: Characteristic Equation of a Matrix 22
6 LU Decomposition: Determinant of a Matrix 28
7 Evaluation of Statistical Parameters: Mean Deviation, Standard 35
Deviation
3 Random Number Generation — Determination of the value of 47
T
Numerical Programming in Physics -IIMSc Physics - [lISem Page 2

1. FALSE POSITION METHOD: ROOTS OF A QUADRATIC
EQUATION

Aim: To find the real roots of the John Wallis” nonlinear equation using False Position
Method.
Theoretical Background: Mathematical models for a wide variety of problems in
physics can be formulated into equations of the form

J(x)=0
where x and f(x) may be real, complex or vector quantities. The solutions of this

equation are called as roots of the equation.
The equation y = f(x) is called as a linear if f(x)is a linear function, for example

y=3x+5

and is called as nonlinear equation if f(x)is a non-linear function, for example

y=x"+1
Note:
The Wallis's nonlinear equation is
x’=2x-5=0

This equation was first solved by John Wallis whose works influenced Issac Newton very
much. It has two other roots which are complex. This equation was so famous that it was
used as a bench mark for testing new techniques of solving nonlinear equations.

False Position Method:
The False Position Method is an iterative method that starts with two initial guesses of
the solution, that is bracketing the solution between the two initial guesses, and then
gradually reducing the bracket until the true solution is obtained.
Algorithm:

1. Assume the initial guesses x, and X,

2. 1e =X — X Y T h
o X e

3. If fi(x,)x f(x)<O0

Set x, =Xx,
4. Otherwise

Set x, = x,

5. Repeat till convergence is reached

Numerical Programming in Physics -IIMSc Physics - [lISem Page 3

The C program false position xx.c thatimplements this method is as follows

//
//
//
//
//

false position xx.cC

To find the real root of Wallis's nonlinear equation
x*3-2%x-5= 0

Roll No

Date

#include<stdio.h>
#include<math.h>
#define EPS 1E-6

float FUN (float); // Function Declaration
void main ()

{

int 1i;
float x0,x1,x2,£f0,£f1,£f2;

printf ("\n Enter the value of x0="); // Let x0 = 1.0

scanf ("%f", &x0) ;

printf ("\n Enter the value of x1="); // Let x1 = 2.0

scanf ("%f", &x1);

printf ("\n---————-—--"--"-"-""""""""""""- \n") ;
printf ("\n\tx0\txI\tx2\tf0\tfl \tf2\n");

printf ("\n---------—---—-——— - \n") ;
i=1;

do {

f0=FUN(x0); // Function Call
f1=FUN(x1); // Function Call

x2=x0-((£0* (x1-x0))/ (£1-£0)) ;

f2=FUN (x2) ;

printf ("\n %10.5f%10.5£%10.5£%10.5f%10.5£%10.5f\n",
x0,x1,x2,£0,£1,£2);

if ((£0*£2)<EPS)
x1 = x2;
else
x0 = x2;
i++;
} while (fabs (f2)>EPS) ;
printf ("\n----------—-—————— - \n") ;

printf ("The solution converges after %5d iterations\n", (i-1));

printf ("\n The root of the Wallis's nonlinear equation by\n");

Numerical Programming in Physics -IIMSc Physics - [lISem Page 4

printf ("\n False Position Method is, x=%f\n\n",x2);
}

/**************************Function Definition ******************/

float FUN(float x)
{
float £,

f = pow(x,3.0)-2.0*x-5;
return f£;

/**/

OUTPUT

/**/

/*********************First Run ********************************/

Enter the wvalue of x0=1

Enter the value of x1=2

x0 x1 x2 £f0 fl £f2
1.000000 2.000000 2.200000 -6.000000 -1.000000 1.248001
1.000000 2.200000 1.993377 -6.000000 1.248001 -1.065963

1.993377 2.200000 2.088561 -1.065963 1.248001 -0.066634
2.088561 2.200000 2.094210 -0.066634 1.248001 -0.003814

2.088561 2.094210 2.094553 -0.066634 -0.003814 0.000014
The solution converges after 6 iterations
The root of the Wallis's non linear equation by

False Position Method x=2.094552

Numerical Programming in Physics -IIMSc Physics - [lISem Page 5

/************************Second Run ******************************/

Enter the value of x0=1.5

Enter the value of x1=1.75

The solution converges after 7 iterations

The root of the Wallis's non linear equation by

False Position Method x=2.094552

/*********************** Thlrd Run ******************************/

Enter the value of x0=0.5

Enter the wvalue of x1=1.5

The solution converges after 36 iterations

The root of the Wallis's non linear equation by

False Position Method x=2.094552

/***/

Result: We find that the real root of the Wallis's equation converges quickly if the initial
values for the roots are closer to the true solution.

The true real root of the equation by False Position Method is x = 2.094552

2. NEWTON RAPHSON’S METHOD: ROOTS OF A
POLYNOMIAL EQUATION.

Numerical Programming in Physics -IIMSc Physics - [lISem Page 6

Aim: To find the multiple roots of a polynomial equation using Newton-Raphson
Method, deflation and synthetic division techniques. Hence to find the fixed points of a
logistic map equation.

Theory: We can locate all the real roots of a polynomial equation by repeatedly applying
Newton —Raphson Method and deflation and synthetic division. If f(x)is a function and

is x, an estimate of its root, and if % is a small increment ,such that x,,, = x, + &, then by

Taylor Expansion we have,

Fx,)= f(x)+ f(x)h+ f"(xn)%+

Neglecting higher orders, and if x,,, is a root of f(x), then

n+l

f(x,,)=00t 0=f(x)+f'(x)h+. ... Therefore, h= f,(x”) . But h=x,,, —x, also.
f(x,)
Hence, x,,, = x, —% Here if x,,, =x, ,the root of the polynomial and x, =x,, the
x}'l
initial guess, then, the Newton Raphson’s Algorithm becomes
@)
SRVACS)

A polynomial of degree n can be expressed as p(x) = (x —x,)g(x) where x, is a root of the
polynomial p(x) and ¢(x) is a quotient polynomial of degree n—1, obtained by synthetic
division. Here the degree of the polynomial is reduced by this synthetic division. This
process is called as deflation.

Note: The quotient polynomial can be further deflated till all the roots are obtained.

Algorithm:
1. Obtain the degree and coefficients of a polynomial (n & a)
2. Decide an error estimate for the first root and error criterion
3. Start FOR LOOP while (n>1)
4. Find the root using Newton —Raphson Algorithm
()
S'(x,)

r 0

U

. Root (n) = x,

6. Deflate the polynomial using synthetic division algorithm and make the factor
polynomial as the new polynomial of order n—1.

7. Set x, = x, (initial value for next root)

8. End FOR LOOP
9. Root(1) = %

a

Numerical Programming in Physics -IIMSc Physics - [lISem Page 7

10.Stop

Problem : Find the roots of the logistic map equation if the coefficients are given as
a;=29,a,=-19and q, =0.

Procedure:The logistic map equation depicting population dynamics of a region is given
as x,,, =kx,(1-x,) = f(x,), where k is a control parameter. If x* is a solution such that

x,., =x and x, = x , then the map reduces to a polynomial

2

ax +a,x +a, =0
wherea, =k ,a, =1-kand a, =0 .
Write a C — program to implement the algorithm given above and obtain the fixed points
of this equation.

// newton.c

// Program to find the multiple roots of a polynomial by
// Newton Raphson Method.

// Roll No

// Date

#include<stdio.h>
#include<math.h>
#define EPS 1E-6
#define MAXIT 50

void main ()
{
int n,status,i, j;
float a[ll],root[10],x0,xr;

void deflate (int, float[],float);
void newton (int, float[], float,int*, float*);

printf ("Enter the degree of polynomial,n=");
scanf ("%d", &n) ;

printf ("Enter the coefficients,a(l)-to-a(n+1l)\n");
for (i=1l;i<=n+1;i++){

printf ("a[%d] = ",1i);

scanf ("Sf", &al[i]);
}
printf ("Enter the initial guess of x, x0= ");
scanf ("$f", &x0) ;

Numerical Programming in Physics -IIMSc Physics - [lISem Page 8

LOOP:
for(i=n;i>=2;i--){
newton (n, a, x0, &status, &xr) ;

if (status==2) {
for (j=n;j>=i+l;j--)
printf (" root %d = %f\n",J,root[]]);
printf ("Next root does not converge in \n");
printf ("%d iterations \n",MAXIT);
goto LOOP;
}

root[i]= xr;

deflate(n,a, xXr) ;
x0=xr;

}
root[l]=-all]l/al2];

printf ("the roots of the polynomial are :\n");
for(i=1;i<=n;i++)
printf ("root %d = %$f\n",i,root[i]);

void newton(int n, float af[ll], float x0,int *status, float *xr)

int i, count;
float fx, fdx;

count=1;
begin:
fx = aln+l];
for(i=n;i>=1;i--)
fx= f£x*x0 + alil;
fdx = a[n+l]*n;
for(i=n;i>=2;i--)
fdx=fdx *x0 +a[i]* (1i-1);
*xr = x0-fx/fdx;
if (fabs ((*xr-x0)/ (*xr)) <=EPS) {
*status = 1;
return;
}
if (count < MAXIT) {
x0=*xr;
count += 1;
goto begin;
}

else{

Numerical Programming in Physics -IIMSc Physics - [lISem Page 9

*status = 2;
return;
}
}
void deflate (int n, float a[ll], float xr)

{
float b[1l1l];

int 1i;

b[n+l]= 0;

for(i=n;i>=1;i--)
bli]l=ali+1l]+xr*b[i+1];

for (i=1;i<=n+1;i++)
ali]l=b[i];
}

/***/

OUTPUT

/***/

Enter the degree of polynomial,n=2

Enter the coefficients,a(l)-to-a(n+1l)

all] =0
alz] = -1.9
al3] = 2.9

Enter the initial guess of x, x0= 0.5
The roots of the polynomial are

root 1 = -0.000000
root 2 0.655172

/***/

Result : The fixed points of the logistic map equation are , x; =............ , X, =

Numerical Programming in Physics -IIMSc Physics - [lISem Page 10

3. GAUSS ELIMINATION METHOD: APPLICATION TO
ELECTRICAL NETWORK

Aim: To solve a system of linear algebraic equations for an electrical network using
simple Gauss Elimination Algorithm.

Theoretical Details: The Gaussian Elimination Method proposes a systematic strategy
for reducing the system of equations to upper triangular form using a forward elimination
process and then obtaining the values of unknowns (x’s) using a back substitution
process.

Let a general set of equations in n unknowns be

A X+ Xy F o, a,,x, =b,
Ay X) F Ayy Xy F oo, a,x, =b,
X, + Xy e, anx, =b,

The coefficients for the k™ — derived system has the form

(k=1)

Ky _ -1 Gy (k1)
d; =4 (k=1) i
Ay
i=k+1—>n
where .
j=k+1->n

Numerical Programming in Physics -IIMSc Physics - [lISem Page 11

a;" =a; fori =1ton,j=1rton.thek™unknown x*is given by

1 (-1) NO (k)
Xy = g, G by - Z% X;

J=k+1
where k varies from n-1 to 1

(n-1)
j— bn

AN

nn

X

Problem: For the electrical network shown in figure write down the current / voltage
equations in matrix form. Solve these equations using a C-Progam and hence find out put

currents 1i,12,13.

R Wa |
A I
%ﬂ
Ra R&
2%% 2%%

La|

By Ohm’s Law, the
circuit are

Rel, +Rs(I, - 1))+ R, (I, - 1;) =V,
R4[2 +R3([2 _13)+R5([2 _11):V2
R113 +R2(13 _[1)+R3(13 _[z):O

These equations can be rearranged as

(Ry = Rs + Rg)I| + RsI, — RyI3 =V

In matrix form, these equations can be written as

equations of the

Numerical Programming in Physics -IIMSc Physics - [lISem

Page 12

(Ry = Rs + Rg) Rs - R, 1 4
—Rs (R3 + Ry + Rs) — R ="
- R, - R; (R + Ry +Ry) | L3 £

In a general format, the equations are written as

ap 412 913 X1 by
ayy ay ayy | | Xy |=|by
asy dzp dzz | | X3 by

The various coefficients a1 etc can be found from the values of the resistances given
below.

R =R, =R, =2Q
V, =V, =5Volts

The matrix equation therefore becomes

Algorithm :

3. Arrange equations such that a,, #0.
4. Eliminate x, from all but the first equation. This is done as follows :

(i). Normalise the first equation by dividing it by a,,.

(if). Subtract from the second equation. a,, times the normalized first equation.
The result is,

Numerical Programming in Physics -IIMSc Physics - [lISem Page 13

a a b
11 12 _ 11
{am —a,, —}cl + {azz —a,, —}cz e =b,—a, —

a

a
We can see that, a, —a, —+=0

ay
Thus, the resultant equation does not contain x,. The new second equation
1s, O+ayx, +...+ay,x, =b)

(iti). Similarly, subtract from the third equation. a,, times the normalized first
equation. The result would be 0+ al,x, +.....+ a3, x, = b;. If we repeat this

procedute till the n” equation is operated on, we will get the following new
system of equations:

The solution of these equations is the same as that of the original equations.

5. Eliminate x, from the third to the last equation in the new set. Again, we assume
that a), # 0.

(i). Subtract from the third equation 4}, times the normalised second
equation.

(i1). Subtract from the fourth equation, a}, times the normalised second
equation, and so on.

This process will continue till the last equation contains only one unknown,

namely, x, .

The final form of the equations will look like this:
a, X, +a,x, +.... +a,,x, =b

Numerical Programming in Physics -IIMSc Physics - [lISem Page 14

This process is called triangularisation. The number of primes indicate the
number of times the coefficient has been modified.

6. Obtain solution by back substitution. The solution is as follows:
plr)
x =
T

nn

This can be substituted back in the (n—1)" equation to obtain the solution for
x,_, . This back substitution can be continued till we get the solution for x,’s

A Cpogram gauss_ xx.cC to solve a system of linear algebraic equations using simple
Gauss Elimination Algorithm is given below.

// guass_xx.cC

// A C program to solve a set of linear algebraic equations using a
// simple Gauss Elimination method

// Roll No:

// Date

#include<stdio.h>
#include<math.h>

void main ()

{
float a[20][20],ratio,x[20];
int i,3j,k,n;

printf ("\n Enter the order of the matrix n=");
scanf ("%d", &n) ;

printf ("\n Enter the coefficients and RHS \n");

for(i=1l;i<=n;i++) {
printf ("\n");
for (j=1;j<=n+l;j++) {
printf ("a[%d] [¥d]l= ",1i,7);
scanf ("%f",&ali] [J]);

Numerical Programming in Physics -IIMSc Physics - [lISem Page 15

}
for (k=1;k<=n-1;k++) {
for(i=k+1;i<=n;i++){
ratio=al[i] [k]/alk][k]:
for (j=1;j<=n+1;j++)
alill[jl=alil[j]l-ratio*alk][Jj];
}

x[n]=al[n] [n+l]/a[n] [n];

for(k=n-1;k>=1;k-—-) {
x[k]=alk] [n+1];
for (J=k+1; j<=n; j++)
x[kl=x[k]-alk] [J]1*x[3];
x[k]=x[k]/alk][k];
}
printf ("\n The current in the circuit are \n");
for(i=1;i<=n;i++)
printf ("\n I(%d)= %$f",i,x[i]);
printf ("\n");

}

/***/

OUTPUT

/***/

Enter the order of the matrix n = 3
Enter the coefficients and RHS

alll[l]l= 2
alll[2]= 3
alll[3]1= -2
al[l]l[4]= 5
alz2][1l]= -3
al2][2]= 8
alz2][3]1= -2
alz2][4]= 5
al3]1[1l]1= -2
al3]1[2]= -2
al3][3]= 6
al3][4]= 0

The current in the circuit are

Numerical Programming in Physics -IIMSc Physics - [lISem Page 16

.363636

(1
1.363636
0
*

I(1
I(2
I(3

/*******

.909091

**/

)
)
) =
* k% %
Result: A program in C is run to solve a system of simultaneous equation for the

physical model of an electrical circuit and the currents in the various branches are
obtained.

4. LINEAR LEAST SQUARES FIT METHOD -
CHARGE OF AN ELECTRON

Aim : To fit a given set of data, from Millikan’s Experiment, to a straight line and find
out the charge of the electron and the error in its measurement using using linear least
squares fit method.

Theory : To fit a set of data, say

X, 1 2 3 4 5 6 7

1

Y 3 4 5 6 8 10 12

to a straight line y = a*x + b, the normal equations are

. aniyi —inZyi
anf—()cl.)2
bzzyi—azxi y—ax

n n

where y & x are the mean values of y and x respectively, a = the slope of a straight line
and b = y- intercept of the
straight line.

a = dy/dx

Numerical Programn b Page 17

Problem : Fit the data from Milikan’s Oil Drop Experiment to the linear equation

ea=n*en + Ae, using least squares fit and (i).Charge of an electron (ii). Error in

measurement of charge.

n 4 5 6 7 8 9 10 11
€ 1 6558 | 8206 | 9.88 | 11.50 13.140 14.82 16.40 18.04
n

12 13 14 15 16 17 18
Cn 19.68 21.32 22.96 24.60 26.24 27.88 29.52
Result :

The given data is fit to a straight line using a C program for linear least squares fit
algorithm and the quantities evaluated are

(i). Charge of an electron e=

(if). Error in measurement of charge, Ae=

Algorithm :

1. Read data values.
2. Compute sum of powers and products > x> y,, > x%.> xy,.

3. Check whether the denominator of the equation for b is zero.
4. Compute b and a.

Coulombs.

Numerical Programming in Physics -IIMSc Physics - [lISem

Page 18

5. Print out the equation.
0. Interpolated data, if required.

// linreg.c

// Program to fit data to a straight line using linear least square
// fits method

// Roll No:

// Date:

#include<stdio.h>
#include<math.h>
#define EPS 1E-25

float a,b;
void LINREG (int ,float [],float [1]);

void main ()

{
int i,n;
float x[20],y[20];

printf ("Enter the number of data points n = ");
scanf ("%d", &n) ;

for (i=1;i<=n;i++) {

printf ("\n");

printf ("x[%d] = ",1);
scanf ("%$f",&x[1]);
printf ("y[%d] = ",1);
scanf ("$f", &y [i]);

y[i] = y[1]*1E-19;
}

LINREG(n,x,Vy) ;
printf ("The charge of an electron, e = %12.6e Coulombs\n",a);

printf ("The error in the measurement of charge,”);
printf (Y deltal[e] =%12.6e Coulombs\n",b);

Numerical Programming in Physics -IIMSc Physics - [lISem Page 19

void LINREG (int n,float x[20],float vy

{

/***/

int 1i;

float sumx, sumy, sumxx, Sumxy;

float xmean, ymean,de

4

sumx = 0.0
sumy = 0.0
SuUmxx =

0.0;
sumxy = 0.0

14

for (i=1l;i<=n;i++) {
sumx = sumx + X

sumy = sumy + y/[

SUmMXxX = sSumxx +
sumxy = sumxy +

xmean = sumx/ (float)
ymean = sumy/ (float)

denom = n*sumxx - sSumx*sumx;

if (fabs (denom) >EPS)

nomy;

(i

i
i

(n);
(n);

{

a = (n*sumxy - sumx*sumy)/denom;

b = (ymean - a*xmean);

OUTPUT

/***/

Enter the number of Data points n= 15

x[1]= 4
y[1l]= 6.558

y[2]= 8.206

Numerical Programming in Physics -IIMSc Physics - [lISem

Page 20

x[4]1= 7
v[4]= 11.50
x[5]= 8

y[5]= 13.140

y[6]= 14.82

x[7]= 10
y[7]1= 16.40

x[8]= 11
y[8]= 18.04

x[9]= 12
y[9]= 19.68
y[10]= 21.32

x[11]= 14
v[1l]= 22.96

x[12]= 15
v[12]= 24.60

x[13]= 16
v[13]= 26.24

x[14]= 17
v[14]= 27.88

x[15]= 18
v[15]= 29.52

The charge of an electron,e=1.638278e-19 Coulombs
The error in the measurement of charge,

delta[e]=2.853786e-21 coulombs

/***/

Numerical Programming in Physics -IIMSc Physics - [lISem Page 21

5. CHARACTERISTIC EQUATION OF A MATRIX:
FADEEV-LEVERRIER METHOD

Aim : To generate the characteristic equation of a matrix using Fadeev-Leverrier
Method.

Theory: Some boundary value problems may be converted to matrix form and may be
expressed as [A— AU [X]=0, where I is the identity matrix, 4is called as the matrix of
coefficients, Ais the eigen value, [X] is the eigen vector and and [4—Al]is called the
characteristic matrix of the coefficient matrix. Expansion of the characteristic matrix
results in a polynomial of degreenin A such that

ln n—1 n—2 n—3 1
+ pid + pyh + p3d S P,_1A +p, =0

If we know the coefficients p,'s, then we can construct the characteristic polynomial

easily. For this we employ the Fadeev-Leverrier Algorithm. This algorithm consists of
generating a sequence of matrices 4, which can be used to determine the values of the

coefficients p,'s.

Let 4 =4

Then the first coefficient is p,=Tr(4),

where Tr (4,)is the trace of the matrix 4,

The other higher order coefficients are found using the recurrence relation

4; = A(Ai—l - pHI)

_Tr(4)

i

where

i

Example: Let us consider the system of equations as

-x,=0
X, —2x,+3x; =0
2x, =3x,=0
From this the matrix A can be written as
-100
A=]1-23
0 2 -3
Let 4 =4
Then p, =Trd, =6

Numerical Programming in Physics -IIMSc Physics - [lISem Page 22

4, = A(Al _pi[)

—100 |{[-100 -6 0 0
=1-23 {[1-23 |-| 0 -6 0
0 2 -3J{[0 2 -3 0 0 -6
-1 00]|[500
=| 1-2 3{|1 43
| 02-3][0 23
-5 0 0
=13 -2 3
2 2-3
Then P = Trd, _ _5
2
Similarly A, = A4, — p,1)
100 |[[-500 -5 0 0
={1-23 }§|-3-23 |-| 0 =5 0
0 2-3[||2 2 -3 0 0 -5
-100][0 00
=(1-23 ||-333
0 2 -3][2 22
0 0 O]
=6 0 0
0 0 0]
Then P3:Tr3A3:O

Therefore the characteristic polynomial is A* + 64 + 51 =0

Fadeev-Leverrier Algorithm

1.

SR A

Read the order of the matrix A, n
Read the elements of the matrix A
Find p,as the trace of matrix A
Begin for Loop (i=2,i<=n;i++)

Calculate the matrices 4, using the recurrence relation 4, = A(4, , — p, 1)

TrA.

Calculate the coefficients p, using the relation p, = —

1

Numerical Programming in Physics -IIMSc Physics - [lISem

Page 23

The C program to implement this algorithm is given as follows

// charac_eqn xx.c

// C Program to write down the characteristic equation of a matrix
// using Fadeev-Leverrier Method

// Roll No

// Date

#include<stdio.h>
#include<math.h>

double TRACE MATRIX (double [10][10],int);

void CHANGE MATRIX (double [10][10], double [10][10], int);

void SUBTRACT MATRIX (double [10][10], double [10][10], int, double);
void MUL MATRIX(double [10][10], double [10][10], double [10][10],int);

main ()

{
int i,Jj,n;
double A[10][10],B[10][10],AC[10][10], C[10]([10];
double P[10],0Q;
printf ("\n Enter the order of the matrix A, n = ");
scanf ("%d", &n) ;

printf ("\n Enter the elements of the matrix A \n");

for(i=1l;i<=n;i++) {
for (j=1;j<=n;j++) {
printf ("A[%2d] [%2d
scanf ("$1f",&A[i] [

] = "Iilj);
1)
}
printf ("\n");
}
Q = 0.0;
SUBTRACT MATRIX (A,B,n,Q);

Q = TRACE_MATRIX(A,n);
P[1] = Q;

for(i=2;i<=n;i++) {
SUBTRACT MATRIX (B,C,n,Q) ;
MUL,_ MATRIX (A,C,AC,n) ;
Q = TRACE MATRIX(AC,n)/ (double) (1) ;
CHANGE_MATRIX (AC,B,n) ;
P[1]=0Q;

Numerical Programming in Physics -IIMSc Physics - [lISem Page 24

}

printf ("The Characteristic Equation is \n\n");
for (i=1;i<=n;i++) {

if (i==1)
printf ("S"%d - P%dS"%d - ",n,i,n-1);
else
if((i>1) && (i<n))
printf ("P%ds"%d - ",i,n-2);
else
if (i==n)

printf ("P%d = 0", n);

}
printf ("\n\n");

printf ("The Coeffecients are \n\n");
for (i=1;i<=n;i++)
printf ("P%d = %$3.11f\t",i,P[i]);
printf ("\n\n");
}
double TRACE MATRIX (double M[10][10], int n)

{

int i, sum;

sum = 0;
for(i=1;i<=n;i++)

sum += M[1i][1];
return sum;

}

void SUBTRACT MATRIX (double M[10][10], double N[10][10], int n,double S)
{

int i, 73;

for(i=1l;i<=n;i++) {
for (j=1;j<=n;j++) {
if (i==7)
N[i][J] = M[1]1[J]-S;
else
N[i][J] = M[1i][3];

}
}
void CHANGE MATRIX (double M[10][10], double N[10][10], int n)

{

int i, 73;

Numerical Programming in Physics -IIMSc Physics - [lISem Page 25

for (i=1;i<=n;i++) {
for (j=1;j<=n;j++)
N[i][J] = M[i][3];
}

}
void MUL MATRIX (double M[10][10],double

N[10][10],double,U[10][10],1int n)
{

int i,7j,k;

for(i=1l;i<=n;i++) {
for (j=1;j<=n;j++) {
Ulil[j] = 0.0;
for (k=1; k<=n; k++)
Uli][3] += M[1][k]I*N[k][3];

/***/

OouT PUT

/***/

Enter the order of the matrix A, n = 3

Enter the elements of the matrix A

Al 111 11 = -1
Al 1][2] =0

Al 1][3] =0

Al 2] 1] =1

Al 211 2] = -2
Al 2][3] = 3

Al 3][1] =0

A[31[2] =

Al 3]1[3] = -3

The Characteristic Equation is
S*"3 - P1S*"2 - P25"1 - P3 =0
The Coeffecients are

Pl = -6.0 P2 = -5.0 P3 = 0.0

Numerical Programming in Physics -IIMSc Physics - [lISem Page 26

/***/

6. DETERIMINANT OF A MATRIX USING
LU DECOMPOSITION METHOD

Aim: To find the determinant of the coefficient matrix of a system of linear algebraic
equations using LU Decomposition Method.

Theoretical Details: The LU Decomposition Method is a Triangular Factorization
Method of solving a set of linear algebraic equations. Let a general set of equations in n
unknowns be given as

A X+ Xy F o a,,x, =b,
Ay X) F Ayy Xy F e, a,x, =b,
A, X, + A%y F o, anx, =b,

In matrix form this set of equations can be represented as

AX =D o (1)

where Aisa nxn matrix, b is a n column vector and x is a vector of nunknowns.

Here the matrix Ais factorized into two triangular matrices, L the lower triangular matrix
which contains upper half off-diagonal elements as zeros and U the upper triangular
matrix which contains lower half off-diagonal elements as zeros, such that

A=LU ..., @)

Numerical Programming in Physics -IIMSc Physics - [lISem Page 27

[, 0 0 O
[0 O
where L= 2 3)
l31 132 133 O
[41 [) [43 [44
Z/lll 12 13 ul4
0 wu, u, u
and U= R PO R O @)
O O u33 u34
0 0 0 u,|
Using equations (1) and (2) we have
(LU)X=D oo 5)
or LUX)=Db.ooiiiiiiiiiiiiiii (0)
Let UX =z i, 7
where zis the unknown vector. Then eqn (6) becomes
Lz=b.cooiiiiiiiiiii 8)

Hence the solution for the original equation (1) can be obtained in two stages,
a. Solve the eqn. (8) Lz = b by forward substitution to obtain z
b. Solve the equation (7) Ux = z by back substitution

The implementation of the LU Triangular Factorization method is done by using the
Dolittle Algorithm.

Dolittle Algorithm:
1. Enter the order of the matrix A, n =

2. Enter the elements of the matrix A and the vector b
3. Setu,, =a, Jorj =1 ton.
4. Setl =1 Jori =1 ton.
5.8etl, =a,lu, Jori =2 ton.

6. For eachj =21 n do:

6)) Fori=21/

Numerical Programming in Physics -IIMSc Physics - [lISem Page 28

i—1
Compute u, =a, — ;likukj

Repeat 7
(i1) Fori= j+1ton
1
Compute lij =—aq,
i
Repeat 7
7. Set z, = b,
8. Fori=2+tn
i—1
Set Sum=21 z;
j=1Y
Set z; =b, —sum
Repeat 7

9. Set X,=2z,/u,

10.Fori=un-1t1

Set

Set

Repeat /
11.Write the results

// LU Decompose XxX.C

n

n
sum=) u Xx,

=)

Jj=i+l Y

x.=(z.—sum)/u..
i (ﬂ) il

// Program to decompose a matrix into LU form and hence to find its

// determinant
// Roll No
// Date

Numerical Programming in Physics -IIMSc Physics - [lISem

Page 29

#define YES 1
#define NO 0
#include<stdio.h>
#include<math.h>

double A[10][10],U0[10][10],L[10]11[10]1,B[10];
void LUD(int,double[10][10],double[10][10],double[10][10],int*);

void main ()
{
int n, fact,i,Jj;
double product U,product L,mod L,mod U,DET A;

printf ("Enter the order of matrix A,n=");
scanf ("%d", &n) ;

printf ("enter the elements of matrix A\n");
for (i=1;i<=n;i++) {
for (j=1;j<=n;j++) {

printf ("A[%2d] [%2d]=",1,3);
scanf ("S1f",&A[1]1[J1);

}
printf ("\n");

}
LUD(n,A,U,L, &fact);
printf ("matrix U\n");

for (i=1;i<=n;i++) {
for (j=1;3j<=n;j++)
printf ("%4.21£\t",U[i]1([3])
printf ("\n");
}

printf ("matrix L\n");

for(i=1l;i<=n;i++) {
for (§j=1;j<=n; j++)
printf ("%4.21£\t",L[1i]([3]);
printf ("\n");
}

product U=1.0;
product L=1.0;

for (i=1;i<=n;i++)
product U=product U*U[i][1];
mod U=product U;

Numerical Programming in Physics -IIMSc Physics - [lISem Page 30

for(i=1l;i<=n;i++)

product L=product L*L[i][i];
mod L=product L;
DET A=mod U*mod L;

printf ("the determinent of matrix A =%4.21f\n\n",DET A);

void LUD (int n,double A[10][10],double U[10][10],double
L[10][10],1int *fact)

int i,7j,k;
double sum;

for(i=1l;i<=n;i++) {
for (§J=1;j<=n;
Uli1[31=

LIi][3]1=

++) {
0;
O.

J

0.

0.0;
}

}

for(3=1;j<=n;j++)

ULL11[31=A[1]1(3]);

for(i=1;i<=n;i++)
L{i][1]=A[1]([1])/U0[1]([1];

for (j=2;j<=n; j++) {
for (i=2;i<=7j;1i++) {
sum=A[i] [J];
for (k=1;k<=1i;k++)
sum=sum-L[i] [k]*U[k] [J];
Uli] [J]=sum;

Numerical Programming in Physics -IIMSc Physics - [lISem Page 31

}
for (i=j+1;i<=n;i++) {
sum=A[i] [J];
for (k=1;k<=j-1;k++)
sum=sum-L[i] [k]*U[k][7];
L{1][J]l=sum/U[J]1[J]1;
}
}
*fact=YES;
return;

}

/***/

OUTPUT

/***/

Enter the order of matrix A,n=3

Enter the elements of matrix A

Al 11[1]1=3
Al 11[21=2
Al 11 3]1=1
Al 2]1[11=2
Al 21 2]1=3
A[2][31=2
Al 31 1]1=1
Al 3]1[21=2
Al 31[3]1=3
Matrix U

3.00 2.00 1.00
0.00 1.67 1.33
0.00 0.00 1.60

=

Matrix L

1.00 0.00 0.00
0.67 1.00 0.00
0.33 0.80 1.00

o

Numerical Programming in Physics -IIMSc Physics - [lISem

Page 32

The determinent of matrix A =8.00

/***/

Result: The C program to find the determinant of a matrix using LU Decomposition
Method is run and its output obtained and verified.

The determinant of the given matrix,

A=

7. EVALUATION OF STATISTICAL PARAMETERS: MEAN
DEVIATION AND STANDARD DEVIATION

Aim: To evaluate statistical parameters such as arithmetic mean, mean deviation and
standard deviation of a frequency tabulated data set.

X, 36 21 53 43 58 91 22 67 15 87

/i 3 4 6 3 5 8 4 3 7 5

Theoretical Background: Statistics is a discipline of science which is concerned with
the study of the collection, organization, analysis, interpretation and presentation of data.
This data may be a collection of discrete variables or continuous variables.

Untabulated Data:

Usually the collected data may be a very large set, with values varying in a random
manner. For example, we can think of a data set of 50 elements, like marks of a group of
students, which may vary in a wide range 0 -100. In order to analyze and derive
meaningful conclusions, a frequency table of the collected data is constructed.
Frequency Table:

Numerical Programming in Physics -IIMSc Physics - [lISem Page 33

A frequency is a systematic arrangement of raw data into smaller groups of appropriate
sizes called classes or intervals. The number of variates that are contained in a given
interval is called as the frequency of the said interval. A frequency table for the marks of a
group of students can be constructed as follows.

Frequency Tabulated Data Set

Interval Frequency
0-10 2
10-20 4
20-30 11
30-40 4
40-50 3
50-60 7
60-70 2
70-80 5
80-90 10
90-100 2
Total Frequency 50

Statistical Parameters:

There are three quantities that describe concisely any given group of data. They are
1. Averages or Measures of Central Tendency or Measures of Location.

2. Measures of Dispersion

3. Measures of Skewness

Averages:

An average indicates the central value of the size of the typical member of a group of
data. It represents the whole series and conveys a fairly adequate idea of the whole group.
As averages tend to lie centrally within a set of data arranged according to magnitude,
they are also called as measures of central tendency or measures of location.

There are three common forms of averages, namely, arithmetic mean, median and mode.

Measures of Dispersion:

While the averages (mean, median and mode) represent the typical values to which the
whole series of data converge, the measures of dispersion denote the extent to which the
magnitude of a given data set differ from each other. Examples of these are mean
deviation, standard deviation etc.

Measures of Skewness:

Numerical Programming in Physics -IIMSc Physics - [lISem Page 34

This is defined as a measure of the extent to which a probability distribution of a real-
valued random wvariable leans to one side of the mean. The skewness value can be
positive or negative, or even undefined.

In this experiment we evaluate just three statistical parameters namely, arithmetic mean,
mean deviation and standard deviation for a tabulated data set.

Arithmetic Mean of Untabulated Data
The arithmetic mean of a set of data n elements of untabulated data, say

15 D R X,
- - X +X,+x, +..X
is defined as x=_t 1% T "
n
n
o
or X = i=1
n

Arithmetic Mean of Tabulated Data:
When a data set is given as frequency distribution of n classes or intervals and
frequencies, then the arithmetic mean is expressed as

N
>f

x=t—
2/

Mean Deviation:
Mean Deviation is the arithmetic mean of the absolute values of the differences of the

variates X; from some arbitrarily fixed constant M, where M is the mean of the data. It is

N
Zf;‘xi _M‘
= = N
LS

expressed as M

where M=

Standard Deviation:
The Standard Deviation gives us an idea of the spread of the variates about the mean

Numerical Programming in Physics -IIMSc Physics - [lISem Page 35

> fi(x, =My
>

value. It is expressed as SIGMA =

where M

These three statistical parameters can be determined for a given frequency tabulated data
set by implementing the formulae given above using the C-program stat xx.c

// stat xx.c

// C Program to calculate the mean deviation and standard deviation
// of a frequency tabulated data set

// Roll No:

// Date

#include<stdio.h>
#include<math.h>

void main ()

{
int i,n,x[20],£[20];
double M,Md, sum x,sum f,sum xf,sum xM;
double x diff,NUM, DENOM, SIGMA;

printf (" Enter the number of data elements in the set, n = ");
scanf ("%d", &n) ;

for (i=1;i<=n;i++) {

printf ("x[%d] = ",1);
scanf ("sd", &x[1i]);
printf ("f[%d] = ",1);

scanf ("%d", &f[1i]);
printf ("\n");
}

/**************TO flnd the Arlthmetlc Mean ****************/

sum _x = 0.0;

Numerical Programming in Physics -IIMSc Physics - [lISem Page 36

sum_f = 0.0

sum xf = 0.0;
sum _xM = 0.0;
for(i=1l;i<=n;i++) {
sum_x = sum_x +(double) (x[1]);
sum_f = sum f +(double) (£[1]);
sum xf = sum xf+ (double) (x[1]) * (double) (£[1]);
}
M = sum xf/sum f;
printf ("mean = $1f\n",M);
printf ("sum xf = %$1f\n",sum xf);

/********** To flnd the mean deviation ********************/

for (i=1;i<=n; i++)
sum_xM = sum xM + (double) (£[1]) *fabs((double) (x[1])-M) ;

NUM = sum xM;
DENOM = sum_ f;
Md = NUM/DENOM;

printf ("The mean deviation of the given tabulated data is ");
printf (" Md = %12.61f\n",Md);

/************ To fll’ld the Standard deViation ****************/

x diff = 0.0;

sum xM =0.0;

for(i=1l;i<=n;i++) {
x diff = pow(fabs((double) (x[1])-M),2.0);
sum xM = sum xM + (double) (f[1i])*x diff;

}

NUM = sum xM;

DENOM = sum_ f;

SIGMA sgrt (NUM/DENOM) ;

printf ("The std deviation of the given tabulated set is ");
printf (" SIGMA = %12.61f\n",SIGMA);

/************* Data Flle ************************************/

printf ("--------""-""—-———— \n") ;
printf ("\t xi\t fi \t xi*fi\t(xi-M)"2 \tfi* (xi-M)"2\n");
printf ("--------""-""—-———— \n") ;

for (i=1;i<=n;i++) {
x diff = pow(fabs((double) (x[1])-M),2.0);

Numerical Programming in Physics -IIMSc Physics - [lISem Page 37

printf ("\t %d\t %d\t %d\t $5.21f\t%5.21f\n", x[i],
fli],£[1]1*x[1],x diff, (double) (£[1])*x diff);

printf ("mean = $1f\n",M);
printf (" Md = %$12.61f\n",Md);
printf (" SIGMA = %$12.61f\n",SIGMA) ;

/***/

OUTPUT

/***/

x1i fi xi*fi (xi-M) "~2 fi*x(xi-M) "2
36 3 108 249.38 748.13
21 4 84 948.13 3792.51
53 o 318 1.406 8.76
43 3 129 77.29 231.88
58 5 290 38.54 192.72
91 8 728 1537.29 12298.35
22 4 88 887.54 3550.17
67 3 201 231.29 693.88
15 7 105 1353.63 9475.39
87 5 435 1239.63 6198.13
Arithmetic Mean M = 51.791667
Mean Deviation Md = 23.901042
Standard Deviation SIGMA = 27.835049

/***/

Numerical Programming in Physics -IIMSc Physics - [lISem Page 38

Result: The C program to evaluate the statistical parameters for the given frequency
tabulated data is run and its output obtained.

Arithmetic Mean e

Median Deviation Md S e

Standard Deviation SIGMA e e

8. RANDOM NUMBER GENERATION-CALCULATION OF
THE VALUE OF &

Aim : To generate random numbers by employing Park-Miller Implementation of
Lehmer’s Prime Modulus Multiplicative Linear Congruential Generator Algorithm and
hence to estimate the value of 7t using Monte Carlo Simulation technique.
Theory :
I. Monte Carlo Method : Estimation of 7 Value

Monte Carlo is a technique that uses random numbers to solve physical problems.
Let us imagine we want to find the area of an irregularly shaped plane (two-dimensional)
tigure. We can do this by enclosing the plane in a square board of known area and hang it
on a wall. Let a blind foldded shooter shoot at it randomly.

Then if we assume unbiased probability of hitting we have,

Numerical Programming in Physics -IIMSc Physics - [lISem Page 39

Area of the figure No of shots falling in the figure

Area of the square - Total Number of shots

Note: Greater the number of shots, higher is the accuracy. Using this technique, the
value of 7 can be estimated. The area of a circle is A= nr? if the circle is a unit circle (i.e.)
it r=1, then 4= 7. Thus by finding the area of the circle, we can find the value of =.
Note:1f we just find the area of the first quadrant of a unit circle, it is enough. We can
then multiply the answer by 4 to get the value of =.

We here generate x” & ‘y’ as two sequences of pseudo random numbers. Using the
function mmc_gen (). And count the number of pairs lying within the first quadrant
using the condition (x* + y?) <=1.

Random Number Generation:

In digital computers, random numbers find important applications. Hence the ability to
generate random numbers assumes importance. The Park-Miller implementation of the
Lehmer’s prime modulus multiplicative linear congruential generator algorithm is the
most preferred and is implemented in many standard scientific routines. (Ref:
Communications of ACM, Oct. 1988, 170/: 31, No: 10). It consists of defining six parameters,
a modulus m, a multiplier a, and four integers g, r, low and high. The random number -
ran_nois generated using an iterative process

1. Initialize the parameters as

a = 16807 = (7%)

m = 2147483647 = (231 —1)
q=127773 = (m/a)

r = 2836 = (mmod a)

2. Find iteratively
low = SD mod q
high =SD / q
test = a * low —r x high

If (test >0)
SD = test
else
SD = test + m

3. Normalize
ran_no = SD/m

A program pi xx.cC to calculate the value of 7 is given. It generates the random
numbers using the routine mmc_gen () , that implements Lehmer’s prime modulus
multiplicative linear congruential random number generator using the Park-Miller
Algorithm.

// pi xx.c

// To estimate the value of pi

Numerical Programming in Physics -IIMSc Physics - [lISem Page 40

// Roll No:
// Date:

#include<stdio.h>
#include<math.h>

double mmc _gen () ;
long SD;

void main ()

{
int i,n,count,count 2;
double x,vy,pi,sigma,p,q;

printf ("Seed SD = ");
scanf ("%1d", &SD) ;

/****%% SD can be any five digit integer *****%%/

/****** SD=12345 *******************************/

printf ("-———-m——mmm - \n") ;

printf (" n \t pi \n");

printf ("-———-m——mmm - \n") ;

for (n=250;n<=10000;n=n+250) {
count=0;

for(i=1l;i<=n;i++) {
x=mmc_gen () ;
y=mmc_gen () ;
if ((x*x+y*y)<=1.0000)
count+=1;

i=(4.0*count)/ (float) (n);
if (n%750==0)
printf ("%$5d %12.41f\n",n,pi);

printf (" The value of pi converges to pi = %$1f \n",pi):;

}

double mmc gen ()

{
long m,a,q,r,high, low, test;
double ran no;

m = 2147483647;
a = 16807;

Numerical Programming in Physics -IIMSc Physics - [lISem Page 41

q = 127773;
r = 2836;

high = SD/qg;
low SD%qg;
test = a*low-r*high;

if (test>0)

SD = test;
else

SD = test+m;

Ran no = (double) (SD) / (double) (m) ;

return ran no;

/**/

OUTPUT

/**/

Seed SD = 12345

n pi

750 3.0987
1500 3.1040
2250 3.1484
3000 3.1013
3750 3.1253
4500 3.0764
5250 3.0857
6000 3.1720
6750 3.1662
7500 3.1141
8250 3.1282
9000 3.1276
9750 3.1463

The value of pi converges to pi = 3.146000

/**/

Numerical Programming in Physics -IIMSc Physics - [lISem Page 42

Result: A C program to generate random numbers and estimate the value of = is run and
the result obtained. m =

Numerical Programming in Physics -IIMSc Physics - [lISem Page 43

