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Chapter 1

Hermite Polynomials: LHO
Wavefunctions

1.1 Aim

1. To obtain the numerical values for the Hermite polynomial functions by solving their
analytical expressions.

2. To plot the wave functions for even and odd quantum states of a one dimensional Lin-
ear Harmonic oscillator (LHO) using the numerical values of the Hermite polynomial
functions so obtained and

3. To plot the probability density of the one dimensional LHO for the n = 10 quantum state.

1.2 Theoretical Details

The Schroedinger Equation for the one dimensional LHO is given as
nod* 1
<—$ + mw2x2> Y(z) = EY(x) (1.1)

As this is a second order inhomogenous differential equation, it is difficult to solve analytically.
Hence it is converted into a dimensionless form, namely the Weber-Hermite differential equation

d*(p)
dp?

+ (1= p* +2n)0(p) =0, (1.2)

by changing the independent variable from x — p, such that

p = Qx
mw

and n is an arbitrary constant, that we assume as the quantum number for the system. Further
assuming

v(p) = e v(p) (1.4)
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6 CHAPTER 1. HERMITE POLYNOMIALS: LHO WAVEFUNCTIONS

and multiplying it with a constant, the Weber-Hermite differential equation gets converted
to the Hermite Differential Equation

Hy(p) = 2pHn(p) + 2nHy(p) = 0. (1.5)

The solutions of this equation are the familiar Hermite polynomial functions H,(p). In
terms of these Hermite Polynomial Functions,the wave function v,,(p) for the LHO can be given

as
1

12 e "2 H, (p), (1.6)

¢n(p) = [ﬁ(gnn'

where n denotes the quantum state of the LHO.

1.3 Analytical Expression for the Hermite Polynomial
Function H,(p)

The H,(p) is the Hermite Polynomial function of degree n. Its analytical expression is given as

=3 =l

r=0

" (gp) 20 (L.7)

ri(n — 2r)

n
where m = 5

C Function to Implement the Analytical Expression for H,(p)

The analytical expression for the Hermite Polynomial function can be implemented in C using

the FUNCTION given below.

double Hermite(double rho,int n)
{

int i,r,m;

long int p,t,u;

double q,s,v,sum,Hn,Num, Denom;

m= n/2;
p = Fact(n);

sum = 0;
for(r = 0; r <=m; r++){
s = (double) (n—2xr);
t = Fact(r);

u = Fact(n—2x*r);

Num = (double) (p)*pow((2.0xrho) ,s);

if(r %2 1= 0)
Num = —Num; /* Implementing (—1)"r */
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21 Denom = (double) (t)=*(double) (u);
2 sum += Num/Denom;

23 }
24 Hn = sum;
25 return Hn;

C Function for Finding the Factorial of a number {n!}

The factorial of a number, say n, that is n! can be implemented using the following C FUNC-
TION.

. long int Fact(int n)
A
3 int i;

1 long int p;

< if(n!= 0){

7 p = 1; /* initializing p to unity x/
; for(i = 1; i <=n; i++)

9 p = pxi;

}

11 else

= p = 1; /* setting 0! =1 * /

13 return p;

1.4 C Program to Obtain the Wave functions of the LHO

The full C program to obtain numerically the wave function v,(p) as well as the probability
density |¢,(p)]* of the LHO is listed below. The numerical values are stored in a data file
lho_59xx.dat

Note: The characters xx stand for the last two digits of the roll number of the student.

v // lho_59xx.c

> // To plot the wave function of a Linear Harmonic Oscillator
s // Roll No

1 // Date

o #include<stdio .h>
r #include <math . h>

o long int Fact(int);
o int n;

11



8 CHAPTER 1. HERMITE POLYNOMIALS: LHO WAVEFUNCTIONS

12 int main ()

13 {

14 int i,N;

5 long int p;

16 double m,omega,z,v,pi,rho,h,y;

17 double Hermite (double ,int);

19 FILE *fp;

20 fp=fopen (”lho_59xx.dat” "w”);

21 if (fp= =NULL){printf(”File Open Error!\n”);return 0;}

22 pi=4.0xatan (1.0) ;

23 h 2001,

24 N =700;

26 printf("n=7);

27 scanf ("%d”,&n) ;

29 fOI‘(iI —N;i<ﬂ; 1++){

30 rho=(double) (i)x*h;

31 y=Hermite (rho ,n);

52 p=Fact(n);

33 v=sqrt ((1.0/pi))=*(1.0/pow(2.0,n)*(1.0/(double)(p))):

34 z=sqrt (v)*y*exp(—(rhoxrho) /2.0);

35 fprintf (fp,”%12.61f%12.61f%12.61f\n” ,tho ,z,pow(z
,2.0));

36 }

37 fclose (fp);

38 }

s double Hermite (double rho,int n)

40 {

41 int i,r,m,;

12 long int p,t,u;

13 double q,s,sum,Hn,Num, Denom, v;

15 m=n/2;

16 p=Fact(n);

18 sum=0;

19 for (r=0;r<=m;r++){

50 s=(double) (n—2x%r) ;

51 t=Fact(r);

u=Fact (n—2x*r) ;

53 Num=(double) (p)*pow((2.0xrho) ,s);
55 Num = —Num;

56 Denom = (double) (t)=*(double) (u);

57 sum += Num/Denom



1.5. PLOTTING LHO WAVE FUNCTIONS AND PROBABILITIES 9

}

Hn = sum;
return Hn;

61 }

¢ long int Fact(int n)
o
, int 1i;
long int p;

if (n!=0){
p=1;
for (i=1;i<=n;i++)
pP=p*1i;
¥
else
p=1;
return p;

The command line arguments to compile and run the C code is given in Fig. (1.1).

:~/ISHAQ-PC/Classes-Nov2019/TEST/tested$ cc lho 59xx.c -lm
:~/ISHAQ-PC/Classes-Nov2019/TEST/tested$ ./a.out

n= 10
:~/ISHAQ-PC/Classes-Nov2019/TEST/tested$ ||

Figure 1.1: Command line arguments for compiling and running the C code 1ho 59xx.c

1.5 Plotting LHO Wave Functions and Probabilities

Using the numerical values in the data file 1ho 51xx.dat, we can plot the wave functions as
well as the probability densities using the graphics package gnuplot.

Plotting Using Gnuplot

To invoke the gnuplot package, just type

gnuplot

in the command line. The gnuplot window opens. Then type the following to obtain the
graphical plot of the wave functions. A snapshot of the command line arguments is shown in
Fig. (1.2). The plots of the first three even state wave functions, namely for n = 0, n = 2 and
n = 4 of the one dimensional LHO are plotted as shown in Fig. 1.3(a) and their corresponding
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Terminal
gnuplot>
gnuplot>
gnhuplot>
gnhuplot>
gnhuplot>
gnuplot>
gnuplot>

CHAPTER 1. HERMITE POLYNOMIALS: LHO WAVEFUNCTIONS

:~$ gnuplot

GNUPLOT
Version 5.2 patchlevel 2 last modified 2017-11-01

Copyright (C) 1986-1993, 1998, 2004, 2007-2017
Thomas Williams, Colin Kelley and many others

gnuplot home: http://www.gnuplot.info

faq,

bugs, etc: type "help FAQ"

immediate help: type "help" (plot window: hit 'h')

type is now 'qt'

set
set
set
set
set
set

pL '

title "Even States Wavefunctions"

xrange [ -6:6]

yrange [-0.9:0.9]

label "(a)" at -5,-0.75

xlabel "{/Times-Italic=30 {/Symbol=25 \\162}}

ylabel "{/Times-Italic=30 {/Symbol=25 \\171(\\162)}

lho 59xx 00.dat' u 1:2 w L lw 3.0 lc rgb "red" t "n = B"D

Figure 1.2: Command line arguments for obtaining figures using gnuplot

probability densities are shown in 1.3(b). Similarly the plots of the first three odd state wave
functions, namely for n = 1, n = 3 and n = 5 of the one dimensional LHO are plotted as
shown in Fig. 1.4(a) and their corresponding probability densities are shown in 1.4(b). The
wave function and the probability density for the n = 10 eigen state are shown in Fig. 1.5
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Even States Wavefunctions
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Figure 1.3: (a) The eigen functions for the first three even eigen states namely n = 0, n = 2
and n = 4 and (b) their corresponding probability densities
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0dd States Wavefunctions
0.9
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Figure 1.4: (a)The eigen functions for the first three odd eigen states namely n =1, n = 3 and
n =>5 and (b) their corresponding probability densities.
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Tenth State Wavefunction

Tn=10 —

Y1o(P)

2

lwio ()|

Figure 1.5: The eigenfunction and the probability density for tenth eigen state of the LHO
n =10
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1.6 Result

1. A C program for implementing the analytic expression for the wave function of a one
dimensional LHO is run.

2. The even and odd state wave functions and probability densities are plotted using gnuplot
graphics package.

3. Further the wave function and the probability density for the n = 10* are also plotted.



Chapter 2

Simulation of Beats, Polarization and
Lissajous Figures

2.1 Aim

To study numerically the superposition of two simple harmonic motions (SHMs)

1. moving in the same direction and observe the phenomenon of beats.

2. moving in the perpendicular directions and observe the phenomena of circular and elliptic
polarizations

3. moving in the perpendicular directions and plot the Lissajous Figures

2.2 Theoretical Detalils

e When two SHMs differing slightly in frequency w; =~ ws, same phase § = 0 and moving
in the same direction interfere, then beats phenomenon is observed.

e When two SHMs having the same frequency w; = wo but a finite phase difference § # 0
interfere in mutually perpendicular directions, then circular and elliptic polarizations are

observed.

e When two SHMs differing in both the frequency w; # ws and phase § # 0 interfere in
mutually perpendicular directions, then Lissajous Figures are observed.

2.3 Beats Phenomenon

Let us consider two Simple Harmonic Waves moving in the same direction. Let these waves be
described mathematically as

x = ajcos(wit), (2.1)
= agcos(wat + 0).

15
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As time passes, these two waves will interfere constructively and destructively. If these two
waves differ in frequency by a very small amount, then their interference will give rise to beats.
If ay = as = a, § = 0, then adding the above equations gives the resultant of the two SHMs as

z = rT+y
= a(coswit + coswst)
= {Qacos <w1 _w2>t} cos <w1—|—w2>t
2 2
or
z = Acos(wt), (2.3)

where A is the amplitude of the resultant SHM, given by

A= {2& Cos (wl ; w2> t} (2.4)

and w is its angular frequency which is the average of the frequencies of the two SHMs and is

given as
(5 &

C Program to Observe the Phenomenon of Superposition of TWO SHMs

The full C program shm.c to simulate numerically the phenomenon of superposition of two
SHMs is given below. To observe beats as well as to draw the envelope for the beats we assume
the values for the parameters as a; = as = 0.75, w; = 0.5, wy = 0.55 and 0 = 0. The numerical
values resulting from the program are stored in a data file beats_59xx.dat.The observed beats
phenomenon as well as the envelopes of the resulting signal, given by Eqn. (2.3) are shown in
Fig.(2.3).

// shm_59xx.c

// program to observe numerically the superposition of two SHMs and
// hence to simulate beats, circular and elliptic polarizations
and // Lissajous figures

// Roll no: 59xx

// Date : 18/12/2019

s #include<stdio .h>
7 #include <math . h>

9

void main ()

{
int i,n;
double u[5001],v[5001], x[5001],y[5001],2z[5001];
double al,a2,h,t,pi;
double omegal ,omega2,omega_diff , delta ,phi;

FILE xfpl, *fp2, xfp3;
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18 fpl=fopen (" beats_59xx.dat”,"w”);
19 if (fpl=NULL){printf(”File—1 Open Error!\n”);return;}

21 fp2=fopen (”polarization_59xx.dat”,"w”);

22 if (fp2=NULL){printf(”File—2 Open Error!\n”);return;}
24 fp3=fopen(”lissajous_59xx .dat”, "w”);

25 if (fp3=NULL){printf(”File =3 Open Error!\n”);return;}
27 n=>5000;

28 h:()l,

30 pi = 4.0xatan (1.0) ;

32 //a1:O75

33 //a2=075

35 printf(”Enter the amplitude of the first SHM, al= " );
36 scanf ("%l 7 &al) ;

38 printf(”Enter the amplitude of the second SHM, a2= " );
39 scanf ("%l &a2) ;

40
41 /*****************>l<>(<>|<>I<>k>X<**>1<>k>l<**>|<>l<>l<>l<*>|<>l<>X<>l<************************ */

42

43 printf(”\n To Simulate the phenomenon of beats \n”);

44

15 //omegal = 0.5

46 //omega2 = 0.55

a7 // delta = 0.0

48

19 printf(”Enter the frequency of the first SHM, omegal=");

50 scanf ("%1f" &omegal ) ;

52 printf(”Enter the frequency of the second SHM,omega2=");
53 scanf ("%1f"7 &omega2) ;

printf(”Enter the phase difference, delta =");
56 scanf ("%1f7 &delta);

59 omega _diff = (omegal—omega2) /2.0;

61 for (i=1;i<=n;i++){

62 t=(double) (i)xh;

63 x[i] = alxcos(omegalxt);
64 y[i] = a2xcos(omega2xt);
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( 23] = x[i)+y[il;
66 u[i] = 2.0xal*cos(omega_diffxt);

67 v[i] = 2.0xa2xcos(omega_diffxt+pi);

68 fprintf (fpl,”%12.6 1f %12.6 1 %12.61f%12.61f\n” ,t,z[i],

uli],v[i]);
69 }

70 fclose (fpl);

72 />I<****************************>|<>I<>i<******************************* >I</

74 printf(”\n To Simulate the phenomenon of polarization \n”);
76 // omegal=0.5

77 // omega2=0.5

78 // delta = 90,120,150,180,210,240,270,300,330,360

80 printf(”Enter the frequency of the first SHM, omegal=");
81 scanf ("%1f” &omegal) ;

83 printf(”Enter the frequency of the second SHM, omega2=");
84 scanf ("%1f"7 &omega?2) ;

86 printf(”Enter the phase difference , delta =");

87 scanf (%17 &delta);

89 phl = (delta*p1)/1800,

o1 for (i=1l;i<=n;i++){

92 t=(double) (i)xh;

03 x[i] = alxcos(omegalxt);

04 y[i] = a2xcos(omega2xt+phi);

05 fprintf (fp2,”%12.61f %12.6 1f%12.6 1f\n" ,t ,x[i],y[i]);
96 }

o7 fclose (fp2);

98

00/ 3 ok Kk ok ok K KK oK ok K KK K R K KKK R SR KK KR SR R K KK SR R K KK SR R K KK SR R S KKK R kK Kk ok ok % [

100

101 printf(”\n To observe Lissajous figures \n”);
103 //omegal=0.75

104 //omega2=1.0

105 //delta = 90

106

107 printf(”Enter the frequency of the first SHM, omegal=");
108 scanf ("%1f"7 &omegal ) ;

109

110
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11 printf(”Enter the frequency of the second SHM,omega2=");
112 scanf ("%1f" &omega2) ;

113

114 printf(”Enter the phase difference , delta =");

115 scanf ("%l 7 &delta);

17 phi =  (deltaxpi)/180.0;

119 for (i=1;i<=n;i++){

120 t=(double) (1)x*h;

121 x[i] = alxcos(omegalxt);

122 y[i] = a2xcos(omega2xt+phi);

123 fprintf (fp3,7%12.61f%12.61{%12.61f\n" ¢t ,x[i],y[i]);
124 }

125 fclose (fp3);

The command line arguments for plotting the beats and other phenomena are listed in Fig.
(2.1).

File Edit View Search Terminal Help

:~/ISHAQ-PC/Classes-Nov2019/TEST$ cc shm 59xx.c -lm
:~/ISHAQ-PC/Classes-Nov2019/TESTS$ ./a.out

Enter the amplitude of the first SHM, al= 0.75

Enter the amplitude of the second SHM, a2= 0.75

To Simulate the phenomenon of beats
Enter the frequency of the first SHM, omegal=0.5
Enter the frequency of the second SHM, omega2=0.55
Enter the phase difference, delta =0

To Simulate the phenomenon of polarization
Enter the frequency of the first SHM, omegal=0.5
Enter the frequency of the second SHM,omega2=0.5
Enter the phase difference, delta =120

To observe Lissajous figures

Enter the frequency of the first SHM, omegal=90

Enter the frequency of the second SHM, omega2=45

Enter the phase difference, delta =45
:~/ISHAQ-PC/Classes-Nov2019/TESTS [ |

Figure 2.1: The command line arguments to plot the beats and other phenomena. The values
for a1, as, w1, wo and ¢ are illustrative and can be changed as desired

The command line arguments in the gnuplot window to plot the figures is shown in Fig.
(2.2).
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File Edit View Search Terminal Help

gnuplot> set border lw 4 lc rgb "blue"

gnuplot> set grid lw 2 lc rgb "blue"

gnuplot> set title "Phenomenon of Beats"

gnuplot> set xlabel "Time t"

gnuplot> set ylabel "Z(t)"

gnhuplot> unset key

gnuplot> pl 'beats 59xx.dat' u 1:2 w 1 lw 3 lc rgb "red"
gnuplot> ﬁ

Figure 2.2: The command line arguments in the gnuplot window to plot the beats phenomenon
is shown.
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Phenomenon of Beats

Figure 2.3: (a) The beats observed for a; = a; = 0.75 and w; = 0.55 and ws = 0.55 and (b)
the envelope satisfying the Eqn. (2.3) for the same



22CHAPTER 2. SIMULATION OF BEATS, POLARIZATION AND LISSAJOUS FIGURES

0.8

0.4 | e

y(t)

B R N NN

-0.8 -
-0.8 -0.4

0 0.4 0.8
x(t)

0.8

‘5=150°‘

[ S R e

y(t)

04 o

-0.8 -
-0.8 -0.4

0 0.4 0.8
x(t)

. ¥(t)

; ‘
o8 0.4 04 08

0
x(t)

0.8

0.4 oo/ e N

¥(t)

-0.8 -
-0.8 -0.4

0 0.4 0.8
x(t)

¥(t)

0.4 0.8

08 0.4

0
x(t)

0.8

§=120"

0.4 F-mmmm e N

y(t)

-0.8

-0.8

0.8

H
-0.4 0.4 0.8

0
x(t)

‘6=1800‘

¥(t)

0.4 | N

-0.8

-0.8

H H
-0.4 0.4 0.8

0
x(1)

& =240

(1)

08

0.8

H
-0.4 0.4 0.8

0
x(t)

[ i

(1)

B T

-0.8

-0.8

0.8

-0.4

0 0.4 0.8
x(t)

| & =360 |

(1)

0.4 |

-0.8

-0.8

-0.4

0.4 0.8

x(ot )

Figure 2.4: The polarization phenomena obderved for various phase differences are shown
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Figure 2.5: The Lissajous figures obtained for different ratios of w; : wy and different phase
differences  are shown.

2.4 Circular and Elliptic Polarization

If two SHMs having the same frequency, but differing in phase, interact along mutually perpen-
dicular directions, then the resultant motion will be still simple harmonic, but the trajectory
will trace a curved path whose shapes depend on their phase difference. If the two oscillations
are given as

x = ajcos(wit),
ascos(wat + 6),

/N
oS
N

where 0 the phase difference between the two SHMs, then the resultant of the two SHMs is

given by
2 2
2
%—l—%—ﬂcosé:sinQé (2.8)
ai as a1a9

Eqn. (2.8) is a general equation for an ellipse.
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W0, =3:4,0=m/2

Figure 2.6: The Lissajous figure obtained for w; : wy = 3 : 4 and phase difference 6 = 7/2 is
shown.

Case 1: (0 =0)
Here Eqn. (2.7) reduce to

or
y=—ux. (2.9)

Hence the trajectory is a straight line.

Case 2: (0 = +m)
Here Eqn. (2.7) reduces to

2
<x+y) _o.
ay ag

a2
= ——7. 2.10
Y e (2.10)

or

Here also the trajectory is a straight line but with a negative slope.

Case 3(a): (6 = £7/2)
Here Eqn. (2.7) reduces to

22 P
—+==1 2.11
a? + a3 (2.11)
This equation (2.11)is the familiar equation for an ellipse. Hence the resultant of the two
SHM will trace an ellipse.

Case 3(b): (6 = £7/2,a1 = as = a)

Here Eqn. (2.7) reduces to

22 P

St =1 (2.12)
This is the familiar equation for a circle. Hence the resultant of the two SHM will therefore

trace an circle.
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The same C program shm. c is run to plot the paths of polarizations. Here we assume the values
of the parameters as a; = as = 0.75, w1 = wy = 0.5 and the successive values of the phase dif-
ferences as 6 = 90°,120°, 150°, 180°, 2107, 240°, 270°, 300°, 330° and 360°. The numerical results
are stored in the data file polarization 59xx.dat. The polarization phenomena observed for
various phase differences are shown in Fig. (2.4).

2.5 Lissajous Figures

If two SHMs differing in frequency by a small amount, say (Aw) interact along mutually
perpendicular directions, then they can be considered as oscillations of an identical frequency,
but with a slowly changing phase difference. Let the two oscillations are given as

aicos(wit), (2.13)
= aycos|wat + (Aw + 0)]. (2.14)

Then the expression (Aw + ) can be considered as the phase difference changing with time
according to a linear law. The resultant of the two SHMs will trace many intricate curves called
as Lissajous Figures. The Lissajous figures for various values of w; and wy and the phase dif-
ferences § are shown in Fig. (2.5). The Lissajous figure for w; : wy = 3 : 4 and phase difference
d = 7/2 is shown in Fig. (2.6).

2.6 Result

The superposition of two simple harmonic motions have been made and
1. Beats phenomenon has been observed

2. Circular and elliptic polarization phenomena for different phase differences d have been
observed

3. Lissajous figures for various frequencies w; : omegas and phase differences § have been
observed.
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Chapter 3

Lagrange’s Interpolation: Nuclear
Scattering Energies

3.1 Aim

To interpolate the set of data for the nuclear scattering cross-section as a function of the energies
of the projectile particles using Lagrange’s interpolation scheme.

3.2 Theoretical Detalils

The Lagrange interpolation is a well known, classical technique for interpolation. Given a set
of N 4+ 1 known samples y(z;), i = 0,1,2,..... N, the problem is to find the unique order N
polynomial fy(z) which interpolates the samples. The solution can be expressed as a linear
combination of elementary N** order polynomials:

fn(z) = Efio)‘i(x)y(xi>’ (3.1)
where
M(x) 2 (x — x0)...(x —zj—1)(z — Tjs1)....(x — 2N) (3.2)
‘ (l‘i—Jfo)....([Ei—ZL'j_l)(ZL'Z‘—ZL’j+1)....(Ii—l’N)
The above equation can be elegantly written as
i) ST, 5o @ = %) (3.3)

(zi — ;)

Here \;(z;) can be interpreted as a polynomial having zeros at all of the samples except at the
i" value, for which it is 1. Hence it can be given as

17 ] = ?:7

3.3 C-Program to Implement Lagranges Interpolation

The C code lag 59xx.c to implement Lagrange’s Interpolation Scheme for the data provided
is given below.

27
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Energy | Scattering Crossection
(MeV) (o) milli-Barns
0 10.6
25 16.0
50 45.0
75 83.5
100 52.8
125 19.9
150 10.8
175 8.25
200 4.7

/) lag_59xx.c

> // To interploate the given set of data using Lagrangian
s // Interpolation

. // Roll No:59xx

s // Date :02/01/2020

r #include<stdio .h>

s #include <math . h>

0 double inter (double[],double[],int ,double);
1 void main ()

12 {

13 int i,j,n;

14 double x,h,xin[20],yin[20],f_x;

16 FILExfpl ,xfp2;

18 fpl=fopen(”lag 59xx_1.dat”, "w”);

19 if (fpl=NULL){printf(”File open error!\n”);return;}

21 fp2=fopen(”lag 59xx 2 .dat”,"w”);

2 if (fp2=NULL){printf(”File open error!\n”);return;}
24 h = 02,

26 printf("n = 7);

27 scanf ("%d”,&n);

29 for (i=1;i<=n;i++){

50 printf("\nxin[%d]= 7,i);

31 scanf (%17 &xin[i]) ;

53 printf ("yin[%d]= ",1);
34 scanf ("%t 7 &yin[i]) ;
; )
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36 for(i=1l;i<n;i++)

% fprintf (fpl,”%12.61f%12.61f\n” ,xin[i],yin[i]);
40 x=hx*(double) (i);

2 f_x=inter (xin,yin ,n,x);

12 fprintf (fp2,”%12.61f%12.61f\n" ;x,f_x);

i3 }

14 fclose (fpl);
15 fclose (fp2);

46 }

v double inter (double xin[20],double yin[20],int n,double x)
s {

19 int i ,J 3

50 double f,lambda[20];

52 f:O,

53 for(i=1l;i<=n;i++){

54 lambda[i]=1.0;

f01‘(j:1;j<:n;j+—|—){

56 (1':J)

57 lambda[1]—lambda[i]*((x—xin [i])/(xin[i]—xin

in);
58 }
59 f=f+yin [i]*lambda[i];
60 }
61 return f;

The command line arguments to compile and run the C code lag 59xx.c is shown in Fig. (3.1).
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:~/ISHAQ-PC/Classes-Nov2019/TEST/tested$ clear

:~/ISHAQ-PC/Classes-Nov2019/TEST/tested$ cc lag 59xx.c -1m
:~/ISHAQ-PC/Classes-Nov2019/TEST/tested$ ./a.out

n==9
xin[1l]= ©
yin[1l]= 10.6
xin[2]= 25
yin[2]= 16.0
xin[3]= 50
yin[3]= 45.0
xin[4]= 75
yin[4]= 83.5
xin[5]= 100
yin[5]= 52.8
xin[6]= 125
yin[6]= 19.9
xin[7]= 150
yin[7]= 10.8
xin[8]= 175
yin[8]= 8.25
xin[9]= 200
yin[9]= 4.7

:~/ISHAQ-PC/Classes-Nov2019/TEST/tested$ [

Figure 3.1: The command line arguments for compiling and running the C code lag 59xx.c

gnuplot> set border 1w 4

gnuplot> set grid 1w 3

gnuplot> set title "{/Times-Italic=15 Scattering Crossection ({/Symbol=15 \\163}) Graph}"
gnuplot> set xrange [0:200]

gnuplot> set xtics 0,40

gnuplot> set yrange [0:100]

gnuplot> set ytics 0,20

gnuplot> set xlabel "Energy E (MeV)"

gnuplot> set ylabel "{/Symbol=15 \\163}(milli-Barns)"

gnuplot> pl 'lag 59xx 2.dat' u 1:2 w 1 lw 3 lc rgb "blue"
gnuplot> rep 'lag 59xx 1l.dat' u 1:2 w p pt 7 ps 2 lc rgb "red"
gnuplot>

Figure 3.2: Command line arguments for obtaining Scattering Cross-section ¢ using gnuplot

Graph

A snapshot of the command line arguments in the gnuplot window to plot the graph is shown
in Fig. (3.2).The interpolated graph using Lagange’s scheme is shown in Fig. (3.3).



3.4. RESULT 31

Scattering Crossection (o) Graph

100

'lag 59xx 2.dat' U 1:2 ——
'lag 59xx l.dat'ul:2 @

O (milli-Barns)

0 [ [ ] [

0 40 80 120 160 200
Energy E (MeV)

Figure 3.3: Plot of the Scattering Cross-section ¢ as a function of the energy of the projectile
particles.

3.4 Result

The given data for the scattering of neutrons is interpolated using Lagrange’s Interpolation

scheme and the nuclear cross-sections for a wide range of neutron energies from 0 to 200 MeV
is plotted using gnuplot.
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Chapter 4

Simulation of Brownian Motion in a
Fluid

4.1 Aim

1. To generate random numbers using Park — Miller Algorithm and

2. To simulate Brownian motion and hence find the root mean sqare displacement for the
particles executing Brownian Motion.

4.2 Theoretical Details

Brownian motion refers to the irregular motion of small particles suspended in a liquid or a
gas, due to their bombardment by molecules of the medium. This was first observed by Robert
Brown in 1827. This can be simulated on a Personal Computer using random numbers.

4.3 Random Numbers Generation

Random numbers are the values taken by random variables. These sequences of values are
generated by physical process like radio activity, diffusion, percolation etc will be truly random
(i.e.) they will be unpredictable and hence irreproducible. A true sequence of random numbers
cannot therefore be generated using a computer. However there are a large number of pseudo-
random number generating algorithms, which can generate seemingly random numbers. As
these generators are based on strict mathematical formulas, they can be easily reproduced.

In this experiment we use the Park-Miller algorithm for the Lehmer’s modulus multiplicative
congruential generator. This Park-Miller algorithm is given as follows.

Here there are four variables a, m,q and r» which are initialized as given below.

a = 16807 (75)
— 2147483647 (231—1)

= 127773 (m/a)
= 2836 (m mod a),

< o 3
|

where mod stands for modulo division. Find

33
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1 low = SD mod q

> high = SD/q

s test = axlow—rxhigh
cif (test >0)

5 SD = test

s else

7 SD = test + m

o ran_no = SD/m

The subroutine function mmc_ gen() implements this algorithm. It uses a SEED (SD) which
can be any number between 1 and 2%, In our program we assume it for simplicity as SD =
12345.

4.4 Brownian Motion

If the x-coordinates and y-coordinates of the particles in a liquid, say pollen grains, are chosen to
be random variables, then the zig-zag motion of these particles, can be simulated numerically.
The root mean square displacement suffered by the particles (pollen grains) is given by the
formula

RMSD =V/\

where A is the average of the squares of the displacements suffered by the particles between
successive collisions with the molecules of the liquid and is given as

A=2X1, [(Iz‘+1 — %)2 + (Yip1 — yi)z}

4.5 C - Program to Simulate Brownian Motion

A program brownian 59xx.c to generate random numbers and simulate Brownian motion is
given.

. // brownian_xx.c

> // C Program to simulate Brownian Motion and find

s // the Root Mean Square Displacement using Random Numbers
. // Roll No: 59xx

s // Date :09/01/2020

r #include<stdio .h>
s #include <math . h>
0 long SDj;

1 double mme_gen () ;

5 int main ()

l«l{
15 int i,n;

16 double x[201]={},y[201]={},pi,lambda ,RMSD,p,q;



4.5. C- PROGRAM TO SIMULATE BROWNIAN MOTION 35

. FILE *fp :

19 fp= fopen (”brownian_59xx.dat”,"w”);

20 if (fp=NULL){printf(”File Open Error!\n”); return 0;}
22 // any five digit number, say SD = 12345

2 printf(”Seed SD = 7);

24 scanf ("%1d”,&SD) ;

26 n :200,

28 for (i=1;i<=n;i++){

2 p = mmc_gen () ;

30 q = mmc_gen () ;

32 x[i] = p;

53 y[i] = a;

35 }

37 printf(” \n");
38 printf(” Table of a few Random Numbers \n”);

39 printf(” \n");

a1 for (i=1;i<=10;i++)

42 printf ("%5d\t\t%12.61f\n" i x[i]);

14 printf(” \n7);

lambda = 0.0;

a7 for (i=2;i<=n;i++){

a8 lambda = lambda + sqrt(pow((x[i—1]—-x[i]) ,2.0)+pow ((y
[i-1]=y[i]),2.0));

49 if ( i >125)

50 fprintf (fp,”%12.6 1f %12.61f\n” ,x[i],y[i]);

51 }

52 RMSD = lambda /(double) (n);

54 printf(” The Root Mean Square Displacement is RMSD = %12.61f
\n” ,RMSD) ;

56 fclose (fp);

57 }

ss double mme_gen ()

59 {

60 long m,a,q,r,high, low, test;
61 double ran_no;
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m = 2147483647,

a = 16807;

q= 127773;

r = 2836;

high = SD/q;

low = SD%q;

test = axlow—rxhigh;

if (test >0)

SD = test;
else

SD = test + m;

ran_no = (double) (SD)/(double) (m);

return ran_-no;

The program on being run prints out a table of ten random numbers as shown in Fig. (4.1).

ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/1l MSc -Even Sem-2019/brown

File Edit View Search Terminal Help
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/brown$ cc brownian 59xx.c -1lm
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/brown$ ./a.out

Seed SD = 12345

0.096617

0.947702

0.011546

0.765787

0.914130

0.333147

0.267198

0.983885

0.339146

0.266209

The Mean Square Displacement is MSD = 0.530548
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/brown$ D

@OUOONOOU A WN

=

Figure 4.1: The command line arguments for compiling and executing the program brownian_
59xx.c and the table of ten random numbers printed on the screen as the output.

4.6 Brownian Motion Simulation Graph

The command line arguments for obtaining the graph simulating the Brownian Motion is shown
in Fig. (4.2).
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ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/1l MSc -Even Sem-2019/brown

37

File Edit View Search Terminal Tabs Help

ahmed@ahmed-PC: ~/ISHAQ-PC/Cla... x| ahmed@ahmed-PC: ~/ISHAQ-PC/Cla... > | ahmed@ahmed-PC: ~/ISHAQ-PC/Cla... =
gnhuplot> set title "Brownian Motion"

ghuplot> set border lw 4

ghuplot> set xrange [0.0:1.0]

ghuplot> set xtics 0.0,0.2

gnuplot> set yrange [0.0:1.0]

gnuplot> set ytics 0.0,0.2

gnuplot> set xlabel "x(t)"

gnuplot> set ylabel "y(t)"

gnuplot> unset key

gnuplot> pl ‘'brownian 59xx.dat' u 1:2 w L lw 2 1c rgb "blue"
gnuplot> rep 'brownian 59xx.dat' u 1:2 w p pt 7 ps 2 lc rgb "red"

gnuplot> D

Figure 4.2: The command line arguments for plotting the Brownian Motion

The simulation of the

Brownian Motion is shown in Fig. (4.3).

Brownian Motion

1
08}
06} N ,;;ggggégg:‘ S~V -
- 7 / “lll.“"
04 | - LR | '
0.2 |
0

Figure 4.3: The simulation plot of the Brownian Motion.

4.7 Result

In this experiment

using gnuplot.

1. random numbers were generated and a few of them were printed on the screen.

2. the Brownian motion was simulated and the root mean square displacement was deter-

mined as RMSD =
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Chapter 5

Simulation of Radioactive Decay

5.1 Aim

1. To generate random numbers using Park — Miller Algorithm and
2. To simulate and verify the law of radio active decay using Monte-Carlo Simulation.

3. To determine the radio decay constant A using the exponential fit function of gnuplot

5.2 Theoretical Detalils

The phenomenon of radio activity is the spontaneous decay of nuclei, accompanied by emission
of one more particles. If we have at any instant of time, say t, a large number say N, of radio
active nuclei and if dN nuclei decay on the average in a time interval dt, then

dN = —ANdt, (5.1)
where A is the radio active decay constant. Integrating Eq. (5.1) gives
N = Nye™, (5.2)

where N is the instantaneous number of nuclei undergoing radio active decay.

5.3 Radio Activity as a Random Process

The phenomenon of radio activity is a random process involving two mutually exclusive events.

Event A: A nucleus either undergoes a radioactive decay, or

Event B: A nucleus does not undergo decay, that is, it is being stable.

Using random numbers and Monte Carlo technique we can simulate this. Let N, (number of
parent nuclei) be the total radio active nuclei in a given sample. Let the probability for a
nucleus to decay in a time ¢ be p. Let N be the instantaneous number of nuclei that undergo
decay. Let D (number of daughter nuclei) be the number of the nuclei formed as a result of
radioactive process. To each nucleus we assign a random number z(¢), lying in the interval
[0,1]. If x < p, let us assume the nucleus has decayed. Then we decrement the number of
nuclei left N by one and increment the number of daughter nuclei D by one. This process is
repeated for successive intervals till no parent is left.

39
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5.4 C Code to Simulate Radioactive Decay

The C program decay_59xx.c to simulate the radioactive decay is given below. The initial
number of radioactive nuclei is assumed as N, = 1000 and the maximum time is assumed as
T,ar = 25. The SEED for the random number generator is assumed as SD = 12345. The
program is run and the data generated is stored in the data file decay_59xx.dat. The output
is plotted as shown in Fig. (5.3). Here the number of nuclei undergoing radioactive decay N is
shown to vary as a function of time ¢.

// decay_59xx.cpp

// To simulate radioactive decay.
// Roll No :

// Date :10/02/2020

s #include<stdio .h>
r #include <math . h>

8
9
10
11

12

long SD;
void main ()

{
int i,No,Do,NU,N,D, T, T max;
double x,p;
double mmec_gen () ;

FILE fp;

fp = fopen(”decay_59xx.dat”,"w”);
lf(fp :NULL){ printf<” File Open EI’I‘OI‘!\I}”); return;}

printf(” Tmax = 7);
scanf ("%d”,&T max) ;

printf(”SD = 7);
scanf(” %ld"”,&SD) ;

prlntf(” \Il”);
printf(” Table of a few Random Numbers \n”);
printf(” \n");

p = mmc_gen () ;
printf ("%5d\t\t%12.61f\n",i,p);
}

printf(” \n");
N = 1000;
D= 0;

p=0.2;
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T = 0;

while ((N>0)&&(T<=T_max) ) {
NU = N;
fprintf (fp,"%15d%15d%15d\n” ,T,N D) ;
for (i=1;i<=NU; i++){

55 }

56

58

59

60

x = mmc_gen () ;
i (x<=p){
N—= 1;
D+= 1;
}
}
T4+
¥
fclose (fp);
double mmec_gen ()
{
long m,a,q,r,high, low, test;
double ran_no;
m = 2147483647;
a = 16807;
q = 127773;
r = 2836;
high = SD/q;
low = SD%q;
test = axlow—rxhigh;
if (test >0)
SD = test;
else
SD = test + m;
ran_no = (double) (SD)/(double) (m);
return ran_no;
}

The command line arguments to compile the program decay 59xx. c is given in Fig. (5.1). The
command line arguments on the gnuplot window to obtain the plot of the radioactive decay
is shown in Fig. (5.2). The exponential decrease in the number of radioactive nuclei N as a
function of time ¢ is shown in Fig. (5.3).
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File Edit View Search Terminal Tabs Help

ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/Il MSc -Even Sem-2019/decay * ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/Il MSc -Even Sem-2019/decay » [filiag
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/decay$ cc decay 59xx.c -lm
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/decay$ ./a.out
T max = 25
SD = 12345
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/decays$ ||

Figure 5.1: The command line arguments to compile and run the C code.

ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/1l MSc -Even Sem-2019/decay

File Edit View Search Terminal Help

gnuplot> set border lw 4

gnuplot> set title "Radioactive Decay"

gnuplot> set xrange [0:25]

ghuplot> set xtics 0,5

gnuplot> set yrange [0:1000]

gnuplot> set ytics 0,200

gnuplot> set xlabel "Time t"

gnuplot> set ylabel "N"

ghuplot> unset key

gnuplot> pl 'decay 59xx.dat' u 1:2 w 1 lw 3 lc rgb "blue"
gnuplot> rep 'decay 59xx.dat' u 1:2 w p pt 6 ps 2 lc rgb "red"
gnuplot> ||

Figure 5.2: The command line arguments on the gnuplot window to obtain the plot of the
radioactive decay.

Radioactive Decay
1000 ¢ - . . .

800

600

400

200

0 5 10 15 20 25
Time t

Figure 5.3: The exponential decrease in the number of radioactive nuclei N as a function of
time ¢.



5.5. TO FIND THE DECAY CONSTANT 43

ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/1l MSc -Even Sem-2019/decay

File Edit View Search Terminal Help

gnuplot> a = 1000

gnuplot> f(x) = a*exp(-x*b)

gnuplot> fit f(x) 'decay 59xx.dat' u 1:2 via a,b

iter chisq delta/lim lambda a b
0 1.1956890938e+06 0.00e+00 1.64e+02 1. +03 1. +00
* 1.6227537477e+19  1.00e+05 1.64e+03 9.788410e+02 -6.020781e-01
1 1.0319256084e+06 -1.59e+04 1.64e+02 1.062413e+03 8.601645e-01
* 2.9602289047e+14  1.00e+05 1.64e+03 9.612868e+02 -3.7908553e-01
2 8.0248497188e+05 -2.86e+04 1.64e+02 1.107556e+03  6.914935e-01
* 7.5189140989e+09  1.00e+05 1.64e+03 9.468066e+02 -1.542265e-01
3 4.6408241178e+05 -7.29e+04 1.64e+02 1.133128e+83  4.957953e-01
* 2.6835538311e+06 8.27e+04 1.64e+03 9.486437e+02  5.852923e-02
4 1.0380183455e+05 -3.47e+05 1.64e+02 1.126590e+03  3.130897e-01
5 1.0264896046e+04 -9.11e+05 1.64e+01 9.825590e+02  1.922727e-01
6 8.1975514087e+02 -1.15e+06 1.64e+00 9.985551e+02  2.117531e-01
7 7.8689819999e+02 -4.18e+03 1.64e-01 9.998840e+02  2.131025e-01
8 7.8689701190e+02 -1.51e-01 1.64e-02 9.998619e+02  2.130926e-01

iter chisq delta/lim lambda a b

IAfter 8 iterations the fit converged.

final sum of squares of residuals : 786.897

rel. change during last iteration : -1.50983e-06

degrees of freedom (FIT_NDF) : 24

rms of residuals (FIT_STDFIT) = sqrt(WSSR/ndf) : 5.72603

variance of residuals (reduced chisquare) = WSSR/ndf : 32.7874

Final set of parameters Asymptotic Standard Error

a = 999.862 +/- 4.339 (0.4339%)

b = 0.213093 +/- 0.001451 (0.6811%)

correlation matrix of the fit parameters:

a b

a 1.000

b 0.629 1.000

gnuplot> print a,b

999.861850428528 0.213092638787021

gnuplot> D

Figure 5.4: To find the decay constant using exponential fit function of gnuplot.

5.5 To Find The Decay Constant

The decay constant A can be found using the curve fitting utility of gnuplot. This can be done
as follows

e Assume No as a and initialize it to 1000.

e Write the expression for the fit: f(x) = a * exp(—z * b), where b is assumed as the decay
constant A

e Fit the data to the expression given : fit f(x) ’decay_59xx.dat’ u 1:2 via a,b
e print a,b

The value of the decay constant A\ = b as given by the exponential fit curve is shown in Fig.

(5.4).

5.6 Result

1. Random Numbers are generated using Park-Miller Algorithm.

2. The law of radioactive decay is verified numerically using Monte-Carlo Simulation and
the graphical plot obtained using gnuplot.

3. The decay constant A is found using exponential fit function of gnuplot as b = 0.21309.
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Chapter 6

Simulation of Projectile Motion:
Euler’s Method

6.1 Aim

1. To plot the motion of a projectile particle for various angles of projection using Euler’s
Method.

2. To find the maximum time of flight (T), maximum range (R) and the maximum height
(H) reached by the projectile particle for various angles of projection.

6.2 Theoretical Detalils

The motion of a body that is projected from a point on the earth so as to move along a
predetermined path is called as projectile motion. Examples of such projectile motion are

(i) the firing of rockets

(ii) the firing of missiles to hit enemy targets

Assumptions

To study the motion of the projectile the following assumptions are made
1. The resistance offered by the air medium to the motion of the projectile is zero.
2. The acceleration due to gravity g remains a constant through out the path of the projectile.

3. In the absence of spinning motion of the projectile, the trajectory of the projectile is
restricted to a two dimensional plane, say (x — y) plane.

The Newton’s equation of motion in its general form is

d2
deZ = f(t,r7) (6.1)

However the projectile motion is a simple case wherein the forces in each directions are uncou-
pled, leading to separation of the equation, Eqn. (6.1) into three equations along the the three

45
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dimensions z, y, z, namely

dx _
mﬁ = f (tv x, :E) )
d?y .
mﬁ = f (tv €, y) )
d*z _
mﬁ = f(t,z,2).

(6.2)

As the projectile motion is two dimensional, say along the z and y the first two of the Eqns.
(6.2) can be used for our calculation. Further as the acceleration of the particle along the
horizantal direction is zero and as the accleration of the particle along the vertical direction is
the acceleration due to gravity (which is acting downwards), these equations can be written as

d2
md—tf = 0, or
P*r
ﬁ _— 0.
de
mﬁ = —mg, or
d*y
a7

(6.3)

(6.4)

The Equations (6.3) and (6.4) are second order differential equations. In order to apply the

Euler method, we convert each of these equations into two one dimensional ones as

dx
- = Vg,
dt
du,,
= 0.
dt
dy
- — v
dt v
dv,
E = Uy — g* t
Parameters of Projectile Motion
1. Maximum time of flight (T) is given as
T QSin(a)‘
g

2. The maximum range of the projectile particle (R) is given as
u? sin(2a)
J .

3. The maximum height reached by the projectile (H) is

u? sin?(a)

H =
29

(6.5)

(6.7)

(6.8)
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6.3 Euler Algorithm to solve ODE

Generally to solve an ordinary differential equation

dz
—=f(,z, 6.10
=T () (610
using Euler’s method, we use the Taylor series expansion of the function f (¢, z, ) and discretise
it as

"t = " 4 AL,

"t = "4+ Axf (t, 1, 3). (6.11)
and iterate the Eqns. (6.11) for n-times to arrive at our desired answer.
Using this algorithm, the equations for the motion of the projectile are reduced as

"t = "+ h,

2" = 2"+, xh,

U;H_l = v,

ytt o=yt vy * h,

ottt = Wl —gxh. (6.12)

where h = At, v, = ucos(a), v, = usin(a) and « is the angle of projection.

6.4 C Code to Simulate Projectile Motion

The C program euler_proj_59xx.c to simulate the projectile motion is given below. Here the
step size is assumed as h = 0.01, the initial velocity is assumed as u = 20 while the acceleration
due to gravity is assumed as g = 9.8. The program is run for various angles of projection
a = 15°,30°,45°,60°,75%,90° and the data are stored in the file euler_proj_59xx.dat in each
case. Then the data are plotted using gnuplot. Further the parameters of the projectile par-
ticle such as mazimum time of flight, maximum range and mazxzimum height reached by the
projectile are calculated.

Note: The angles are to be converted into radians so as to get the correct results.

1 // euler_proj_59xx.c

> // C program to simulate the motion of a projectile
s // using Euler method

+// Roll no: 59xx

s // Date : 18/02/2020

r #include<stdio .h>

s #include <math . h>

o double g,h,x,y,vx,vy,t,alpha u;

10
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15 int main ()

5 double angle ,pi,t_-max;
double R,H,T;

void EULER(double);

FILE *fpl :
fpl=fopen(”euler_proj_59xx.dat”,"w”);
if (fpl=NULL){printf(”File—=1 Open Error!\n”);return 0;}

b

h = 0.01; // step size or delta_t

g = 9.8;

u= 20.0;

pi = 4.0xatan (1.0) ;

// angles alpha = 15,30,45,60,75 degrees

printf(”Enter the angle of projection, alpha = 7);
scanf ("%1f” &alpha) ;

alpha = (pixalpha)/180; // to convert the angle into radians

I

9

|
o oo
o oo

9

t
X
y

vx=uxcos (alpha);
vy=uxsin (alpha) ;
t_max = (2.0xuxsin (alpha))/g;

do{
EULER(t) ;
fprintf (fpl,”%12.61f%12.61f%12.61f\n" ;t ,x,y);
t = t+h;

}while (t<=t_max) ;

T = t_max;

R = (pow(u,2.0)*sin (2.0xalpha))/g;
H = (pow(uxsin (alpha) ,2.0))/(2.0xg);
printf(”\nThe maximum time of flight is \n”);
printf ("T = %12.61f secs\n”,t_max);

printf(”\nThe maximum range is \n”);
printf ("R = %12.61f m\n” ,R);



60

61

62

66

67

6.4. C CODE TO SIMULATE PROJECTILE MOTION 49

printf(”\nThe maximum height is \n”);
printf("H = %12.61f m\n” H);

fclose (fpl);

void EULER(double t)

X = X + vxxh;
VX = VX;

y =Yy + vyxh;
vy = vy—gxh;

The command line argument to compile and run the programme is given in Fig. (6.1).

ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/Il MSc -Even Sem-2

File Edit View Search Terminal Help
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/proj$ cc euler proj 59xx.c -lm
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/proj$ ./a.out

Enter the angle of projection, alpha = 45

The maximum time of flight is
T = 2.886150 secs

The maximum range of the projectile is
R = 40.816327 m

The maximum height reached by the projectile is
H = 10.204082 m
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/proj$ D

Figure 6.1: The command line arguments to compile and run the C code.

The command line argument in the gnuplot window to plot the trajectory of the projectile
is shown in Fig. (6.2).
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File Edit View Search Terminal Help

Thomas Williams, Colin Kelley and many others

gnuplot home: http://www.gnuplot.info
faqg, bugs, etc: type "help FAQ"
immediate help: type "help" (plot window: hit 'h'")

Terminal type is now 'qt'
gnuplot> !clear

gnuplot> set border lw 4 1c rgb "blue"

gnuplot> set grid lw 2 1c rgb "blue"

gnuplot> set xlabel "Range R"

gnuplot> set ylabel "Height H"

gnuplot> unset key

gnuplot> set title "Projectile Motion"

gnuplot> pl ‘'euler proj 59xx.dat' u 1:2 w L lw 3 lc rgbh "red"
gnuplot> ﬁ

Figure 6.2: The command line arguments to plot the trajectory using gnuplot.

The figure so obtained is shown in Fig. (6.3).

Gnuplot window 0 X
CHAA
NN N

Projectile Motion

Height H

0 5 10 15 20 25 30 35 40
Range R

30.8442, 5.48031

Figure 6.3: The trajectory for o = 45° is shown.

In a similar manner the trajectories for various angles of projection are shown in Fig. (6.4)



6.5. RESULT 51

Projectile Motion
20

P S

Height H

Range R

Figure 6.4: The trajectories for various angles of projection.

6.5 Result

1. The C program to observe the trajectories of projectile motion for various angles of
projection using Euler’s method is run and the graphs are obtained using gnuplot.

2. The parameters for the projectile motion for various angles of projection are also obtained
and tabulated.

Angle | Maximum Time | Maximum Range | Maximum Height
« T secs R m Hm

15° 1.056404 20.408163 1.367088

30° 2.040816 35.347976 5.102041

45° 2.886150 40.816327 10.204082

60° 3.534798 35.347976 15.306122

75° 3.942554 20.408163 19.041076




52 CHAPTER 6. SIMULATION OF PROJECTILE MOTION: EULER’S METHOD



Chapter 7

Simpson’s 1/3 Rule: Motion of a Body

in a Central Potential

7.1 Aim

1. To solve an integral using Simpson’s 1/3 Rule.

2. To study the motion of a body in a central potential

7.2 Motion of a Body in a Central Potential

A central force is defined as a force which is directed about a fixed point. It depends only
on the radial distance and is independent of angular coordinates. Examples of central force

problems are

e Motion of planets around the sun

e Motion of the electrons around the nuclei, etc.,

Integral Equation of the Orbit

The integral Equation for the orbit is

T Jdr
0= / + constant

min J2
2112 E—-V -
o (-7 - 5
where m is the mass

J is the angular momentum
E' is the total enerby

—k

V = — is the potential energy
r

r is the radial distance

T'min 1S the minimum value of the orbital radius
of the particle in the central force field.

(7.1)

By solving this integral, using Simpson’s 1/3 rule, the orbit of the particle in a central potential

can be obtained.

93
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7.3 Simpson’s 1/3 Rule for Integration
To integrate a function f(z) from the limit a to b , according to Simpson’s 1/3 rule, we consider
the integral to be equal to the area enclosed by the curve f(z) between the limits a to b. The

area is divided into n segments or strips of interval h = (b — a)/n. To each segment of f(z) in
each subinterval, a quadratic function is fitted. The algorithm is given below

/b fla)de = g [A+ 4B + 20 (7.2)

where

(n-1)
B = f (a+ih)
i=1,3,...
(n—2)
C= fla+jh) (7.3)
J=2,4,6,...

7.4 C Code for Plotting the Motion of the particle in a
Central Force Field

The C program to plot the orbit of the particle in a central force field is given below,

// simpson_59xx.c

// program to simulate the motion of a body in central potential
using simpsons 1/3 rule

// Roll No:

// Date :12/03/2020

o #include<stdio . h>
r #include<stdlib . h>
s #include <math . h>

)

S
10

double SIMS(int ,double, double);
double a,b,r,r_min;

s void main ()

{
int i,j,n,p;
double r_max,delta_r ,theta x,y;

FILExfp ;
fp=fopen (”simpson _59xx.dat” ,"w”);
if (fp=NULL){printf(”file open error!\n”);return;}

n = 20;
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24 r-min = 0.7;

25 a = r_min;

27 romax = 1.8;

29 delta_r = 0001,

31 i = 1;

32 b = r_min;

33 while (b<=r_max){

34 b += delta_rx(double)(i);
theta = 4.0%«SIMS(n,a,b);
36 x= axcos(theta);

a7 y= axsin (theta);

38 fprintf (fp,” " %12.61f%12.61f\n" ;x,y);
39 1++,

40 }

1 fclose (fp);

12 }
i double SIMS(int n, double a, double b)

44

45 {

46 int i ,j )

47 double sum,ics ,h;

as double func(double r);

49

50 sum=func (a)+func(b);

52 h=(b—a) /(double) (n);

54 for(i=l;i<=m—1;i4+=2)

55 sum=sum+4.0x* func (a+ix*h) ;
57 for (j=2;j<=n-2;j+=2)

58 sum=sum+2.0% func (a+j*h) ;
60 ics:(h/3.0)*sum;

62 return ics;

64 }

ss double func(double r)

66 {

67 double J mk,q,E,V,{;
68 J:10,

69 IIl:llO,

70 kZl.O;
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}

E=-0.4;

V=k/r;

g=sqrt (2.0 (m+E—m«V) —(JxJ) /(r*r));
f=J /(r*rxq);

return f;

The command line argument to compile and run the programme is given in Fig. (7.1). Here
a and b are the semi-minor and semi-major axes. The step size is assumed as h = (b — a)/n.
The other parameters are assumed as J = 1.0, m = 1.0, £k = 1.0, F = —0.4 and the central
potential is given as V = —k/r.

ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/1l MSc -Even Sem-2019/central

File Edit View Search Terminal Help

:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/central$ cc simpson 59xx.c -lm
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/central$ ./a.out
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/central$ D

Figure 7.1: The command line arguments to compile and run the C code.

The command line arguments for plotting the orbit of the particle in the central force field
using gnuplot is shown in Fig. (7.2).

ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/11 MSc -Even Sem-2019/central

File Edit View Search Terminal Help

gnuplot>
gnuplot>
gnuplot>
gnuplot>
gnuplot>
gnuplot>
gnuplot>
gnuplot>
gnuplot>

set
set
set
set
set
set

border lw 4 lc rgb "blue"

grid w 2 1c rgb "blue"

zeroaxis lw 3 lc rgb "blue"

title "Orbit of a Particle in a Central Force Field"
xlabel "X"

ylabel "Y"

unset key
Eﬁ 'simpson_59xx.dat' u 1:2 w 1 lw 3 lc rgb "red"

Figure 7.2: The command line arguments in the gnuplot window to obtain the orbit of the
particle in the central potential.

The actual plot of the orbit of the particle in the central potential is shown in Fig. (7.3).
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Gnuplot window 0
-¢ % &/

Orbit of a Particle in a Central Force Field

—

LT N
\_//

-0.0964483, 0.822287

Figure 7.3: The orbit of the particle in the central potential.

7.5 Result

1
The motion of a partilce in a central force field is solved numerically using Simpson’s 3 method

and its orbit is obtained using gnuplot.
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Chapter 8

Electromagnetic Oscillations in a LCR
Circuit: RK4 Method

8.1 Aim

1. To set up the mathematical equations for the LCR circuit and to normalize them using
proper rescaling parameters.

2. To solve the normalized equations numerically using RK4 Algorithm and C programming
language.

3. Hence to draw the time plots and phase portrait for the LCR circuit.

8.2 Series LCR Circuit

The series forced LCR circuit is a simple circuit containing an inductance, a capacitance and a
resistance connected in series with a sinusoidal ac source. The circuit is shown in Fig. (8.1).

L C R
%»—H«w

Q\/ F sin (Q7)

Figure 8.1: The forced series LCR circuit containing an inductance, a capacitance and a resis-
tance connected in series with an ac sinusoidal power source.

Circuit Equations

Applying Kirchhoff’s Voltage Law to the circuit, we have

Il Q :
L—+ = I1=F Q 1
t C +R sin(§2t), (8.1)

29
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where L is the inductance, C' is the capacitance, R is the resistance, F' is the strength and 2
is the frequency of the external sinusoidal force. We know that the current is the time rate of

d
change of charge, that is [ = dcf Hence the Eqn. (8.1) becomes
¢Q  Q , ,dQ

Lﬁ + el + RE = F'sin(Qt). (8.2)

This Eqn. (8.2) is a second order differential equation, which is difficult to solve. Hence we
convert the equation to a set of two coupled first order differential equations, namely

aQ

@ = b

dl R

= (L) I — [fQC + F'sin(Qt). (8.3)

Rescaling and Normalized Forms

The Eqns. (8.3) contain terms that have inequal magnitude. For example the capacitance is of
the order of micro-farads, while the inductance is of the order of milli-Henries and the resistance
is of the order of Ohms. These lead to difficulties while solving them numerically. Hence to
avoid this problem, the Eqns. (8.3) are converted into normalized form as

dz
dt
dy
dt

To obtain these equations we have used what are called as the rescaling factors, which convert
the variables, namely charge and current into dimensionless form. The rescaling variables are

2
t:RCT,x:g,y:IR,a:RO,f:aFandw:QRC.

L

=Y

= —a(y+x)+ fsin(wt). (8.4)

8.3 RK4 Algorithm

The Runge-Kutte IV order Method is a most commonly used method for solving ordinary
differential equations. If

f(z,t) = 0.

is a first order differential equation in one independent variable, say ¢ and one dependent
variable x, then the RK4 algorithm is given as

my = f(ti,xi)
h mih
my = f<t1+2,xz+21>
h moh
mg = f<t1+2,$¢+22>

my = f(tz+h,:cz+m3h)
2 2
xi+<m1+ m2—g m3+m4>h

Here the coefficients m;s are the slopes at various points in the interval h.

Tiy1r =
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RK4 Method for Second Order Differential Equation

Any second order differential equation can be converted into two coupled first order differential
equations. This algorithm can be extended to such a coupled set of two first order differential
equations, say

f1<I,y7t) = 07

f2<$,y,t) = 0.

where the independent variable is ¢ and the dependent variables are z and y. The extended
RK4 algorithm is given as

ki = fi(ti, i, )
= f

my 1 (L i, y5)
h kih mih
2 f<z+27 :yz+ 9 )
h kih mih
mo f<z+2a 7yz+ 2 )
h koh mah
3 f<z+27 7yz+ 9 )
h koh mah
ms = f( it oyt >

ky = f(ti+ h,z;+ ksh,y; +msh)
(

my f(ti+ h,x; + ksh, y; + mgh)
ki + 2ky + 2ks + K
Tiy1 = 1'7,*|><1+ Q—g 3 1 4>h
+ 2mo + 2ms +
Yir1r = Y+ <m1 2 6 s m4) h

8.4 C code to implement the RK4 Algorithm for LCR
Circuit

The C code to implement the system of two coupled first order differential equations, Eqns.
(8.4) describing the LCR circuit using the RK4 algorithm, is given below

1 // To study numerically the electromagnetic oscillations of a
> // LCR circuit by RK4 method

s // Roll No :

. // Date : 14/02/2018

s #include <stdio.h>
r #include <math.h>

8
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o double alpha ,omega, f;
0 double t,x,y,h;

11

12 double FUNCI(double, double, double);
13 double FUNC2(double, double, double);

15 void main ()

16 {

17 long i,n;

18 double k1,k2,k3,k4;

19 double ml,m2, m3,m4;

20 double R,L,C,F, freq, pi;

22 FILExfp ;
23 fp = fopen(”ler_59xx.dat”,"w”);
24 if (fp=NULL){printf(”File open error!\n”);return ;}

26 n = 20000,
27 h = 0.1;

b pi = 4.0xatan (1.0) ;

R = 50;
32 L = 25E-3;
C = 0.2E-6;
34 freq = 1000;

36 alpha = (R«RxC) /L;
37 omega = (2.0x%pikxfreq*RxC);

39 pI‘iIltf(”F = 7’);
10 scanf ("%l &F) ;

4o f = alphaxF;

44 printf(”\nalpha =%12.61f\nomega =%12.61f\nf =%12.61f\n\n",
alpha ,omega , ) ;

1
1
1

46 X =

17 y =
t

|
coo

Y

50 for(i=1;i<=n;i++){
51 k1l = FUNCI(t,x,y);
52 ml = FUNC2(t ,x,y);

54 k2 = FUNCI(t+0.5%h,x4+0.5%kl+h, y+0.5%mlxh);
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m2 = FUNC2(t+0.5%h,x+0.5%xkl*h, y+0.5*%xmlxh);

k3 = FUNCI(t+0.5%h,x+0.5%xk2xh,y+0.5%xm2xh) ;
m3 = FUNC2(t+0.5%h,x+0.5xk2xh,y+0.5*xm2xh) ;

k4 = FUNCI(t+h,x+k3xh, y+m3«h) ;
m4 = FUNC2( t+h, x+k3*h, y+m3«h) ;

x = x+(k1+2.0xk2+2.0xk34+k4)xh /6.0;
y = y+(ml+2.0%xm242.0xm3+m4) xh /6.0

t = t+h ;

if (i>10000)
fprintf (fp,” " %12.61f%12.61f%12.61f\n" ,t ,x,y);

.

}
fclose (fp);
double FUNC1(double t, double x, double y)
{
double f1,g_x;
t = t%x1.0;
fl1=y;
return f1;
¥
double FUNC2(double t, double x, double y)
{
double f2;
f2 = —alphax(y+x)+f*sin (omegaxt) ;
return f2;
}

The command line argument to compile and run the programme is given in Fig. (8.2). Here
the step size is assumed as h = 0.1, the total number of iterations is assumed as n = 20000,
the series resistance is taken as R = 50()s, the inductance is taken as L = 25 milli-Henry, the
capacitance is assumed as C' = 0.2 micro-Farads and the frequency as freq = 1000 Hertz. The
amplitude of the external sinusoidal force is assumed as F' = 5 Volts.
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ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/1l MSc -Even Sem-2019/lcr

File Edit View Search Terminal Help

:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/1lcr$ cc lcr 59xx.c -1m
:~/ISHAQ-PC/Classes-Nov2019/II MSc -Even Sem-2019/lcr$ ./a.out

F =5

alpha = 0.020000
omega = 0.062832
f= 0.100000

:~/ISHAQ-PC/Classes-Nov2019/I1I MSc -Even Sem-2019/lcr$% D

Figure 8.2: The command line arguments to compile and run the C code.

8.5 Time Plots and the Phase Portrait

The evolution of a system with time can be inferred by drawing its time plot while the full
dynamics can be pictured by its phase portrait. The time plot is the plot of a system variable
as a function of time. It is drawn by taking time on the x—axis and the variable, say z(t) on
the y—axis. The command line arguments for plotting the time plot of the normalized current
x(t) is shown in Fig. (8.3).

ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/I1l MSc -Even Sem-2019/lcr

File Edit View Search Terminal Help

gnuplot> set title "Time Series Plot of x(t)"
gnuplot> set border 1w 4 lc rgb "blue"
gnuplot> set grid lw 2 lc rgb "blue"

gnhuplot> unset key

gnuplot> set xrange [1000:2000]

gnuplot> set xtics 1000,200

gnuplot> set yrange [-8:8]

gnhuplot> set ytics -8,4

gnhuplot> set xlabel "Time t"

ghuplot> set ylabel "x(t)"

gnuplot> pl 'lcr 59xx.dat' u 1:2 w 1 1w 2 lc rgb "red"
gnuplot> ﬁ

Figure 8.3: The command line arguments in the gnuplot window to obtain the plot of the
x—variable.

The actual time plot of the z—variable is shown in Fig. (8.4).
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Gnuplot window 0 B
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Figure 8.4: The plot of the x—variable as a function of time.
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Similarly the command line arguments for plotting the time series of the normalized voltage
v(t) is shown in Fig. (8.5).

File Edit View Search Terminal Tabs Help
ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/1l MSc -Even Sem-2019/lcr =

gnuplot>
gnuplot>
gnuplot>
gnhuplot>
gnuplot>
gnhuplot>
gnhuplot>
gnuplot>
gnuplot>
gnuplot>
gnhuplot>
gnuplot>

set border 1w 4 1c rgb "blue"

set title "Time Plot for y(t)"

set grid lw 2 lc rgb "blue"

unset key

set xlabel

"Time t"

set ylabel "y(t)"
set xrange [1500:2000]
set xtics 1500,100
set yrange [-4:4]
set ytics -4,2

Eﬂ 'ler 59xx.dat' u 1:3 w 1 lw 3 1c rgb "red"

Figure 8.5: The command line arguments in the gnuplot window to obtain the plot of the

y—variable.

The actual time plot of the y—variable is shown in Fig. (8.6).
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Figure 8.6: The plot of the y—variable as a function of time.

ahmed@ahmed-PC: ~/ISHAQ-PC/Classes-Nov2019/1l MSc -Even Sem-2019/lcr

File Edit View Search Terminal Help

gnuplot> set title "Phase Portrait in the (x-y) plane"
gnuplot> set border 1w 4 lc rgb "blue"

gnuplot> set grid lw 2 lc rgb "blue"

gnuplot> set xlabel "x(t)"
gnuplot> set ylabel "y(t)"
gnuplot> unset key

gnhuplot> set xrange [-8:8]
gnuplot> set xtics -8,4
gnuplot> set yrange [-0.6:0.
gnuplot> set ytics -0.6,0.3
gnuplot> set zeroaxis lw 3
gnuplot> pl 'lcr 59xx.dat' u 2:3 w 1 lw 2 1lc rgb "red"
gnuplot> ﬁ

6]

Figure 8.7: The command line arguments in the gnuplot window to obtain the phase plot in
the (z — y) plane.
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Figure 8.8: The plot of the phase portrait in the (x — y) plane.

The phase plane is a two dimensional plane spanned by the position variable x(t) and the
velocity variable (y(t) = x(t)). It describes clearly the dynamics of a physical system. In the
phase space, each point represents a dynamical state of the system. As time passes, the state
of the system changes. This causes the phase point to move in the phase space. The path
followed by the phase point is called as the phase trajectory. When the energy of the system
is a constant, then the phase trajectory will be a closed curve. The command line argument
to obtain the phase trajectory of the LCR circuit constructed using the normalized charge and

current variables is shown in Fig. (8.7), while the actual phase portrait is shown in Fig. (8.8).

8.6 Result

1. The equations for the forced series LCR circuit are obtained using Kirchhoft’s Laws and
are converted to normalized form using proper rescaling parameters.

2. The normalized equations are solved numerically using a C program for the RK4 algorithm
and

3. The time plots for the normalized charge and current variables are obtained and the phase
portrait in the (x — y) plane is obtained.



